{"title":"CrossPriv","authors":"Harshita Diddee, Bhrigu Kansra","doi":"10.1145/3324884.3418911","DOIUrl":null,"url":null,"abstract":"The design and implementation of artificial intelligence driven software that keeps user data private is a complex yet necessary requirement in the current times. Developers must consider several ethical and legal challenges while developing services which relay massive amount of private information over a network grid which is susceptible to attack from malicious agents. In most cases, organizations adopt a traditional model training approach where publicly available data, or data specifically collated for the task is used to train the model. Specifically in the healthcare section, the operation of deep learning algorithms on limited local data may introduce a significant bias to the system and the accuracy of the model may not be representative due to lack of richly covariate training data. In this paper, we propose CrossPriv,a user privacy preservation model for cross-silo Federated Learning systems to dictate some preliminary norms of SaaS based collaborative software. We discuss the client and server side characteristics of the software deployed on each side. Further, We demonstrate the efficacy of the proposed model by training a convolution neural network on distributed data of two different silos to detect pneumonia using X-Rays whilst not sharing any raw data between the silos.","PeriodicalId":267160,"journal":{"name":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3418911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The design and implementation of artificial intelligence driven software that keeps user data private is a complex yet necessary requirement in the current times. Developers must consider several ethical and legal challenges while developing services which relay massive amount of private information over a network grid which is susceptible to attack from malicious agents. In most cases, organizations adopt a traditional model training approach where publicly available data, or data specifically collated for the task is used to train the model. Specifically in the healthcare section, the operation of deep learning algorithms on limited local data may introduce a significant bias to the system and the accuracy of the model may not be representative due to lack of richly covariate training data. In this paper, we propose CrossPriv,a user privacy preservation model for cross-silo Federated Learning systems to dictate some preliminary norms of SaaS based collaborative software. We discuss the client and server side characteristics of the software deployed on each side. Further, We demonstrate the efficacy of the proposed model by training a convolution neural network on distributed data of two different silos to detect pneumonia using X-Rays whilst not sharing any raw data between the silos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ImpAPTr PerfCI STIFA Prober SADT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1