Real-World On-Board Uav Audio Data Set For Propeller Anomalies

Sai Srinadhu Katta, Kide Vuojärvi, S. Nandyala, Ulla-Maria Kovalainen, Lauren Baddeley
{"title":"Real-World On-Board Uav Audio Data Set For Propeller Anomalies","authors":"Sai Srinadhu Katta, Kide Vuojärvi, S. Nandyala, Ulla-Maria Kovalainen, Lauren Baddeley","doi":"10.1109/ICASSP43922.2022.9747789","DOIUrl":null,"url":null,"abstract":"Detecting propeller damage in Unmanned Aerial Vehicles (UAV) is a crucial step in ensuring their operational resilience and safety. In this work, we present a novel real-world audio data set of propeller anomalies, and use several deep learning models to classify the damage. This data set consists of more than 5 hours of audio recordings, covering all configurations of intact and broken propellers in a UAV quadcopter. A microphone array was mounted onto a UAV, and numerous autonomous indoor missions were flown. Our on-board setup has provided clean audio recordings containing little background noise. We have developed classification models for this data set, using different deep learning architectures: Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Transformer Encoder (TrEnc). We conclude that the TrEnc outperforms other architectures, having 11k parameters, .57M Flops, 98.30% accuracy, .98 precision, and .98 recall. Finally, we make our data set publicly available here⊙.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP43922.2022.9747789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Detecting propeller damage in Unmanned Aerial Vehicles (UAV) is a crucial step in ensuring their operational resilience and safety. In this work, we present a novel real-world audio data set of propeller anomalies, and use several deep learning models to classify the damage. This data set consists of more than 5 hours of audio recordings, covering all configurations of intact and broken propellers in a UAV quadcopter. A microphone array was mounted onto a UAV, and numerous autonomous indoor missions were flown. Our on-board setup has provided clean audio recordings containing little background noise. We have developed classification models for this data set, using different deep learning architectures: Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Transformer Encoder (TrEnc). We conclude that the TrEnc outperforms other architectures, having 11k parameters, .57M Flops, 98.30% accuracy, .98 precision, and .98 recall. Finally, we make our data set publicly available here⊙.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真实世界的机载无人机音频数据集螺旋桨异常
无人机螺旋桨损伤检测是保证无人机运行弹性和安全性的关键环节。在这项工作中,我们提出了一种新的真实世界螺旋桨异常音频数据集,并使用几种深度学习模型对损伤进行分类。该数据集由超过5小时的录音组成,涵盖了无人机四轴飞行器中完整和损坏的螺旋桨的所有配置。一个麦克风阵列被安装在一架无人机上,并执行了许多自主室内任务。我们的车载设置提供了包含少量背景噪音的干净音频记录。我们为该数据集开发了分类模型,使用不同的深度学习架构:深度神经网络(dnn)、卷积神经网络(cnn)、长短期记忆(LSTM)和变压器编码器(TrEnc)。我们得出结论,TrEnc优于其他架构,具有11k参数,0.57 m Flops, 98.30%准确率,0.98精度和0.98召回率。最后,我们在这里公开了我们的数据集⊙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1