Identification of Splice Junctions Across Species Using BLSTM Model

Aparajita Dutta, K. Singh, A. Anand
{"title":"Identification of Splice Junctions Across Species Using BLSTM Model","authors":"Aparajita Dutta, K. Singh, A. Anand","doi":"10.1145/3589437.3589438","DOIUrl":null,"url":null,"abstract":"Deep learning models like convolutional neural networks (CNN) and recurrent neural networks (RNN) have been used to identify splice sites from genome sequences. Most deep learning applications identify splice sites from a single species. Furthermore, the models generally identify and interpret only the canonical splice sites. However, a model capable of identifying both canonical and non-canonical splice sites from multiple species with comparable accuracy is more generalizable and robust. We analyze the performance of a BLSTM model for the first time across various species. We compare this RNN-based model with state-of-the-art splice site prediction models for identifying novel canonical and non-canonical splice sites in homo sapiens, mus musculus, and drosophila melanogaster.","PeriodicalId":119590,"journal":{"name":"Proceedings of the 2022 6th International Conference on Computational Biology and Bioinformatics","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Computational Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589437.3589438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning models like convolutional neural networks (CNN) and recurrent neural networks (RNN) have been used to identify splice sites from genome sequences. Most deep learning applications identify splice sites from a single species. Furthermore, the models generally identify and interpret only the canonical splice sites. However, a model capable of identifying both canonical and non-canonical splice sites from multiple species with comparable accuracy is more generalizable and robust. We analyze the performance of a BLSTM model for the first time across various species. We compare this RNN-based model with state-of-the-art splice site prediction models for identifying novel canonical and non-canonical splice sites in homo sapiens, mus musculus, and drosophila melanogaster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用BLSTM模型鉴定跨物种剪接连接
卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型已被用于识别基因组序列中的剪接位点。大多数深度学习应用程序从单个物种中识别剪接位点。此外,这些模型通常只能识别和解释典型的剪接位点。然而,一个能够以相当的精度识别多个物种的典型和非典型剪接位点的模型更具有通用性和鲁棒性。我们首次分析了跨物种的BLSTM模型的性能。我们将这种基于rnn的模型与最先进的剪接位点预测模型进行比较,以识别智人、小家鼠和黑食果蝇中新的规范和非规范剪接位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Splice Junctions Across Species Using BLSTM Model Application of Convolutional Neural Network in Raman Spectral Recognition of Covid-19 Cross-Disease Bioinformatics Analysis to Elucidate Roles of Astrocytic Pathways Regulating Neuroinflammation in Autism Spectrum Disorder Interpreting Arrhythmia Classification Using Deep Neural Network and CAM-Based Approach Utilizing Data Clustering for Hypotheses Discovery in Multimodal Exercise and Health Interventions with Limited Sample Size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1