Efficient importance sampling imputation algorithms for quantile and composite quantile regression

Haoyang Cheng
{"title":"Efficient importance sampling imputation algorithms for quantile and composite quantile regression","authors":"Haoyang Cheng","doi":"10.1002/sam.11565","DOIUrl":null,"url":null,"abstract":"Nowadays, missing data in regression model is one of the most well‐known topics. In this paper, we propose a class of efficient importance sampling imputation algorithms (EIS) for quantile and composite quantile regression with missing covariates. They are an EIS in quantile regression (EISQ) and its three extensions in composite quantile regression (EISCQ). Our EISQ uses an interior point (IP) approach, while EISCQ algorithms use IP and other two well‐known approaches: Majorize‐minimization (MM) and coordinate descent (CD). The aims of our proposed EIS algorithms are to decrease estimated variances and relieve computational burden at the same time, which improves the performances of coefficients estimators in both estimated and computational efficiencies. To compare our EIS algorithms with other existing competitors including complete cases analysis and multiple imputation, the paper carries out a series of simulation studies with different sample sizes and different levels of missing rates under different missing mechanism models. Finally, we apply all the algorithms to part of the examination data in National Health and Nutrition Examination Survey.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, missing data in regression model is one of the most well‐known topics. In this paper, we propose a class of efficient importance sampling imputation algorithms (EIS) for quantile and composite quantile regression with missing covariates. They are an EIS in quantile regression (EISQ) and its three extensions in composite quantile regression (EISCQ). Our EISQ uses an interior point (IP) approach, while EISCQ algorithms use IP and other two well‐known approaches: Majorize‐minimization (MM) and coordinate descent (CD). The aims of our proposed EIS algorithms are to decrease estimated variances and relieve computational burden at the same time, which improves the performances of coefficients estimators in both estimated and computational efficiencies. To compare our EIS algorithms with other existing competitors including complete cases analysis and multiple imputation, the paper carries out a series of simulation studies with different sample sizes and different levels of missing rates under different missing mechanism models. Finally, we apply all the algorithms to part of the examination data in National Health and Nutrition Examination Survey.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分位数和复合分位数回归的有效重要抽样输入算法
目前,回归模型中的数据缺失问题是人们最为关注的问题之一。本文针对缺失协变量的分位数和复合分位数回归,提出了一类有效的重要抽样插值算法。它们是分位数回归中的分位数回归(EISQ)及其在复合分位数回归中的三个扩展。我们的EISQ使用内部点(IP)方法,而EISCQ算法使用IP和其他两种众所周知的方法:最大化最小化(MM)和坐标下降(CD)。我们提出的EIS算法的目的是在减少估计方差的同时减轻计算负担,从而提高系数估计器的估计效率和计算效率。为了将我们的EIS算法与现有的竞争算法进行比较,包括完整案例分析和多重代入,本文在不同缺失机制模型下进行了不同样本量和不同缺失率水平的一系列仿真研究。最后,我们将所有算法应用于国家健康与营养检查调查的部分检查数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1