Neural interval‐censored survival regression with feature selection

Carlos García Meixide, Marcos Matabuena, Louis Abraham, Michael R. Kosorok
{"title":"Neural interval‐censored survival regression with feature selection","authors":"Carlos García Meixide, Marcos Matabuena, Louis Abraham, Michael R. Kosorok","doi":"10.1002/sam.11704","DOIUrl":null,"url":null,"abstract":"Survival analysis is a fundamental area of focus in biomedical research, particularly in the context of personalized medicine. This prominence is due to the increasing prevalence of large and high‐dimensional datasets, such as omics and medical image data. However, the literature on nonlinear regression algorithms and variable selection techniques for interval‐censoring is either limited or nonexistent, particularly in the context of neural networks. Our objective is to introduce a novel predictive framework tailored for interval‐censored regression tasks, rooted in Accelerated Failure Time (AFT) models. Our strategy comprises two key components: (i) a variable selection phase leveraging recent advances on sparse neural network architectures; (ii) a regression model targeting prediction of the interval‐censored response. To assess the performance of our novel algorithm, we conducted a comprehensive evaluation through both numerical experiments and real‐world applications that encompass scenarios related to diabetes and physical activity. Our results outperform traditional AFT algorithms, particularly in scenarios featuring nonlinear relationships.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"87 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Survival analysis is a fundamental area of focus in biomedical research, particularly in the context of personalized medicine. This prominence is due to the increasing prevalence of large and high‐dimensional datasets, such as omics and medical image data. However, the literature on nonlinear regression algorithms and variable selection techniques for interval‐censoring is either limited or nonexistent, particularly in the context of neural networks. Our objective is to introduce a novel predictive framework tailored for interval‐censored regression tasks, rooted in Accelerated Failure Time (AFT) models. Our strategy comprises two key components: (i) a variable selection phase leveraging recent advances on sparse neural network architectures; (ii) a regression model targeting prediction of the interval‐censored response. To assess the performance of our novel algorithm, we conducted a comprehensive evaluation through both numerical experiments and real‐world applications that encompass scenarios related to diabetes and physical activity. Our results outperform traditional AFT algorithms, particularly in scenarios featuring nonlinear relationships.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带特征选择的神经区间删失生存回归
生存分析是生物医学研究的一个基本重点领域,尤其是在个性化医疗方面。之所以如此突出,是因为大型高维数据集(如 omics 和医学图像数据)越来越普遍。然而,关于区间校正的非线性回归算法和变量选择技术的文献要么很有限,要么根本不存在,尤其是在神经网络方面。我们的目标是针对区间校正回归任务引入一个新的预测框架,该框架植根于加速故障时间(AFT)模型。我们的策略由两个关键部分组成:(i) 利用最近在稀疏神经网络架构方面取得的进展进行变量选择阶段;(ii) 以预测区间删失响应为目标的回归模型。为了评估新算法的性能,我们通过数值实验和实际应用进行了全面评估,其中包括与糖尿病和体育锻炼相关的场景。我们的结果优于传统的 AFT 算法,尤其是在具有非线性关系的场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1