Development of high quality AlN epitaxial film for 2.4 GHz front-end SAW matched filter

S. Tomabechi, K. Wada, S. Saigusa, H. Matsuhashi, H. Nakase, K. Masu, K. Tsubouchi
{"title":"Development of high quality AlN epitaxial film for 2.4 GHz front-end SAW matched filter","authors":"S. Tomabechi, K. Wada, S. Saigusa, H. Matsuhashi, H. Nakase, K. Masu, K. Tsubouchi","doi":"10.1109/ULTSYM.1999.849399","DOIUrl":null,"url":null,"abstract":"We have developed aluminum nitride (AlN) epitaxial growth technology using Knudsen pressure MOCVD method. The thickness uniformity was ±1%. However groove-like cracks were formed on the surface of the AlN epitaxial film. AlN deposition on off-angle substrates and the AlN deposition at high temperature have been investigated for eliminating the cracks on the surface. AlN deposition on an Al2O3 surface which is -4 degree off-angle from c'-axis has resulted in elimination of the cracks from the SEM (Scanning Electron Microscope) observations. The cracks in an AlN film deposited at a higher temperature of 1140°C/40mTorr are found to be completely eliminated on the whole 2\"-φ wafer from SEM and laser-scan microscope observations. The propagation loss has been evaluated from the characteristics of time domain impulse response of 2.4 GHz matched filters fabricated on 2\"-φ wafers. The propagation loss of crackless AlN films is drastically improved by one order compared with that of cracked AlN films.","PeriodicalId":339424,"journal":{"name":"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1999.849399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We have developed aluminum nitride (AlN) epitaxial growth technology using Knudsen pressure MOCVD method. The thickness uniformity was ±1%. However groove-like cracks were formed on the surface of the AlN epitaxial film. AlN deposition on off-angle substrates and the AlN deposition at high temperature have been investigated for eliminating the cracks on the surface. AlN deposition on an Al2O3 surface which is -4 degree off-angle from c'-axis has resulted in elimination of the cracks from the SEM (Scanning Electron Microscope) observations. The cracks in an AlN film deposited at a higher temperature of 1140°C/40mTorr are found to be completely eliminated on the whole 2"-φ wafer from SEM and laser-scan microscope observations. The propagation loss has been evaluated from the characteristics of time domain impulse response of 2.4 GHz matched filters fabricated on 2"-φ wafers. The propagation loss of crackless AlN films is drastically improved by one order compared with that of cracked AlN films.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2.4 GHz前端SAW匹配滤波器高质量AlN外延膜的研制
采用Knudsen压力MOCVD法开发了氮化铝(AlN)外延生长技术。厚度均匀度为±1%。然而,在AlN外延膜表面形成沟槽状裂纹。研究了在非角度衬底上沉积AlN和在高温下沉积AlN以消除表面裂纹。AlN沉积在与c′轴偏离-4度的Al2O3表面上,从SEM(扫描电子显微镜)观察中可以消除裂纹。SEM和激光扫描显微镜观察发现,在1140°C/40mTorr较高温度下沉积的AlN膜在整个2”-φ晶圆上完全消除了裂纹。从2" φ晶圆上制作的2.4 GHz匹配滤波器的时域脉冲响应特性出发,对其传播损耗进行了评价。无裂纹AlN薄膜的传播损耗比有裂纹AlN薄膜显著提高了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast beam shape computation and wave propagation via the Radon transform Experimental verification of acoustic saturation Ultrasonic characterization of emulsions: milk and water in oil High-contrast RF correlation imaging of defects in food package seals Analysis of resolution for an amplitude steered array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1