An Improved Emotion-based Analysis of Arabic Twitter Data using Deep Learning

Ahmed El-Sayed, Shaimaa Y. Lazem, Mohamed M. Abougabal
{"title":"An Improved Emotion-based Analysis of Arabic Twitter Data using Deep Learning","authors":"Ahmed El-Sayed, Shaimaa Y. Lazem, Mohamed M. Abougabal","doi":"10.1109/JAC-ECC54461.2021.9691416","DOIUrl":null,"url":null,"abstract":"Nowadays everyone is using social media like Twitter, Instagram, Facebook and other social media platforms. Thoughts and feelings about everything could be expressed on these social media platforms. Sentiment and emotion analysis are important tools for analyzing people’s opinions. The lack of using deep learning models in Arabic emotion analysis and the complex structure of the Arabic language encouraged us to explore different word embedding and deep learning models to improve the Arabic emotion analysis accuracy. A combination of Arabic text preprocessing techniques were tested with multiple word embedding, machine learning and deep learning models to categorize the emotion of Arabic tweets into 8 emotions. The AraBERT deep learning model achieved the best accuracy of 75.8% and outperformed other machine learning classifiers in the field of emotion analysis.","PeriodicalId":354908,"journal":{"name":"2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JAC-ECC54461.2021.9691416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays everyone is using social media like Twitter, Instagram, Facebook and other social media platforms. Thoughts and feelings about everything could be expressed on these social media platforms. Sentiment and emotion analysis are important tools for analyzing people’s opinions. The lack of using deep learning models in Arabic emotion analysis and the complex structure of the Arabic language encouraged us to explore different word embedding and deep learning models to improve the Arabic emotion analysis accuracy. A combination of Arabic text preprocessing techniques were tested with multiple word embedding, machine learning and deep learning models to categorize the emotion of Arabic tweets into 8 emotions. The AraBERT deep learning model achieved the best accuracy of 75.8% and outperformed other machine learning classifiers in the field of emotion analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习改进的基于情感的阿拉伯语Twitter数据分析
现在每个人都在使用社交媒体,比如Twitter、Instagram、Facebook和其他社交媒体平台。所有的想法和感受都可以在这些社交媒体平台上表达出来。情感和情绪分析是分析人们观点的重要工具。在阿拉伯语情感分析中缺乏使用深度学习模型以及阿拉伯语的复杂结构促使我们探索不同的词嵌入和深度学习模型来提高阿拉伯语情感分析的准确性。通过多词嵌入、机器学习和深度学习模型对阿拉伯语文本预处理技术进行组合测试,将阿拉伯语推文的情绪分为8种情绪。AraBERT深度学习模型达到了75.8%的最佳准确率,在情绪分析领域优于其他机器学习分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A robust CNN classification of whole slide thyroid carcinoma images Time-Modulated Plasma ME-dipole Planar Arrays Synthesis for Beam-Shaping Patterns Using PSO Control of Robot Arm Based on EOG Signals Remote Monitoring System Dedicated To COVID-19 Patients Healthcare An Improved Emotion-based Analysis of Arabic Twitter Data using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1