High-SNR model order selection using exponentially embedded family and its applications to curve fitting and clustering

Quan Ding, S. Kay, Xiaorong Zhang
{"title":"High-SNR model order selection using exponentially embedded family and its applications to curve fitting and clustering","authors":"Quan Ding, S. Kay, Xiaorong Zhang","doi":"10.1109/CIDM.2014.7008708","DOIUrl":null,"url":null,"abstract":"The exponentially embedded family (EEF) of probability density functions was originally proposed in [1] for model order selection. The performance of the original EEF deteriorates somewhat when nuisance parameters are present, especially in the case of high signal-to-noise ratio (SNR). Therefore, we propose a new EEF for model order selection in the case of high SNR. It is shown that without nuisance parameters, the new EEF is the same as the original EEF. However, with nuisance parameters, the new EEF takes a different form. The new EEF is applied to problems of polynomial curve fitting and clustering. Simulation results show that, with nuisance parameters, the new EEF outperforms the original EEF and Bayesian information criterion (BIC) at high SNR.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The exponentially embedded family (EEF) of probability density functions was originally proposed in [1] for model order selection. The performance of the original EEF deteriorates somewhat when nuisance parameters are present, especially in the case of high signal-to-noise ratio (SNR). Therefore, we propose a new EEF for model order selection in the case of high SNR. It is shown that without nuisance parameters, the new EEF is the same as the original EEF. However, with nuisance parameters, the new EEF takes a different form. The new EEF is applied to problems of polynomial curve fitting and clustering. Simulation results show that, with nuisance parameters, the new EEF outperforms the original EEF and Bayesian information criterion (BIC) at high SNR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于指数嵌入族的高信噪比模型阶次选择及其在曲线拟合和聚类中的应用
概率密度函数的指数嵌入族(exponential embedded family, EEF)最早是在[1]中提出的用于模型阶数选择的方法。当干扰参数存在时,原始EEF的性能有所下降,特别是在高信噪比(SNR)的情况下。因此,我们提出了一种新的EEF,用于高信噪比情况下的模型阶数选择。结果表明,在没有干扰参数的情况下,新模型与原模型基本一致。然而,由于有了麻烦的参数,新的EEF采用了不同的形式。该方法应用于多项式曲线拟合和聚类问题。仿真结果表明,在具有干扰参数的情况下,新EEF在高信噪比下优于原EEF和贝叶斯信息准则(BIC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1