Configuring a load-balanced switch in hardware

Srikanth Arekapudi, Shang-Tse Chuang, I. Keslassy, N. McKeown
{"title":"Configuring a load-balanced switch in hardware","authors":"Srikanth Arekapudi, Shang-Tse Chuang, I. Keslassy, N. McKeown","doi":"10.1109/CONECT.2004.1375201","DOIUrl":null,"url":null,"abstract":"The load-balanced switch architecture is a promising way to scale router capacity. We explained previously (Keslassy, I. et al., Proc. ACM SIGCOMM, 2003) how it can be used to build a 100 Tb/s router with no centralized scheduler, no memory operating faster than the line-rate, no packet mis-sequencing, a 100% throughput guarantee for all traffic patterns, and an optical switch fabric that simply spreads traffic evenly among linecards. This switch fabric uses optical MEMS switches that are reconfigured only when linecards are added and deleted, allowing the router to function when any subset of linecards is present and working. We have also introduced a configuration algorithm that can find a correct configuration of the MEMS switches in polynomial time (Keslassy et al., Proc. IEEE Infocom '04, 2004). However, we found that our algorithm takes over 50 seconds to run in software for a 100 Tb/s router. Our goal is to restore the router to operation within 50 ms of failure. We have modified our algorithm for implementation in dedicated hardware. In particular, to simplify the Ford-Fulkerson algorithm in bipartite matches, we reduce memory accesses and use bit manipulation schemes. Then, we decompose permutations using the Slepian-Duguid algorithm and reduce the configuration time with a simplified memory scheme. Our experimental results show that it is possible to achieve the 50 ms target.","PeriodicalId":224195,"journal":{"name":"Proceedings. 12th Annual IEEE Symposium on High Performance Interconnects","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 12th Annual IEEE Symposium on High Performance Interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECT.2004.1375201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The load-balanced switch architecture is a promising way to scale router capacity. We explained previously (Keslassy, I. et al., Proc. ACM SIGCOMM, 2003) how it can be used to build a 100 Tb/s router with no centralized scheduler, no memory operating faster than the line-rate, no packet mis-sequencing, a 100% throughput guarantee for all traffic patterns, and an optical switch fabric that simply spreads traffic evenly among linecards. This switch fabric uses optical MEMS switches that are reconfigured only when linecards are added and deleted, allowing the router to function when any subset of linecards is present and working. We have also introduced a configuration algorithm that can find a correct configuration of the MEMS switches in polynomial time (Keslassy et al., Proc. IEEE Infocom '04, 2004). However, we found that our algorithm takes over 50 seconds to run in software for a 100 Tb/s router. Our goal is to restore the router to operation within 50 ms of failure. We have modified our algorithm for implementation in dedicated hardware. In particular, to simplify the Ford-Fulkerson algorithm in bipartite matches, we reduce memory accesses and use bit manipulation schemes. Then, we decompose permutations using the Slepian-Duguid algorithm and reduce the configuration time with a simplified memory scheme. Our experimental results show that it is possible to achieve the 50 ms target.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配置硬件负载均衡交换机
负载均衡交换机架构是一种很有前途的扩展路由器容量的方法。我们之前解释过(Keslassy, I. et al., Proc. ACM SIGCOMM, 2003)如何使用它来构建一个100 Tb/s的路由器,没有集中调度程序,没有内存运行速度快于线路速率,没有数据包错误排序,所有流量模式100%的吞吐量保证,以及一个光交换结构,简单地在线路卡之间均匀分布流量。该交换机结构使用光学MEMS交换机,仅在添加和删除线卡时重新配置,允许路由器在任何线卡子集存在并工作时正常工作。我们还介绍了一种配置算法,可以在多项式时间内找到MEMS开关的正确配置(Keslassy等人,Proc. IEEE Infocom '04, 2004)。然而,我们发现我们的算法在100 Tb/s路由器的软件中运行需要50多秒。我们的目标是在故障发生50毫秒内恢复路由器的运行。我们已经修改了算法,以便在专用硬件上实现。为了简化二部匹配中的Ford-Fulkerson算法,我们减少了内存访问并使用了位操作方案。然后,我们使用Slepian-Duguid算法分解排列,并使用简化的存储方案减少配置时间。实验结果表明,实现50 ms的目标是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Configuring a load-balanced switch in hardware Design of a high-speed optical interconnect for scalable shared memory multiprocessors Non-random generator for IPv6 tables Efficient multi-match packet classification with TCAM Resilient network infrastructures for global grid computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1