A Self-Adaptive Explicit Semantic Analysis Method for Computing Semantic Relatedness Using Wikipedia

Weiping Wang, Pengbing Chen, Bowen Liu
{"title":"A Self-Adaptive Explicit Semantic Analysis Method for Computing Semantic Relatedness Using Wikipedia","authors":"Weiping Wang, Pengbing Chen, Bowen Liu","doi":"10.1109/FITME.2008.36","DOIUrl":null,"url":null,"abstract":"In recent years, the explicit semantic analysis (ESA) method has got a good performance in computing semantic relatedness (SR). However, ESA method has failed to consider the given context of the word-pair, and generates the same semantic concepts for one word in different word-pairs. It canpsilat exactly determine the intended sense of an ambiguous word. In this paper, we propose an improved method for computing semantic relatedness. Our technique, the self-adaptive explicit semantic analysis (SAESA), is unique in that it generates corresponding concepts to express the intended meaning for the word, according to the different words being compared and the different context. Experimental results on WordSimilarity-353 benchmark dataset show that the proposed method are superior to those of existing methods, the correlation of computed result with human judgment has an improvement from r = 0.74 to 0.81.","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In recent years, the explicit semantic analysis (ESA) method has got a good performance in computing semantic relatedness (SR). However, ESA method has failed to consider the given context of the word-pair, and generates the same semantic concepts for one word in different word-pairs. It canpsilat exactly determine the intended sense of an ambiguous word. In this paper, we propose an improved method for computing semantic relatedness. Our technique, the self-adaptive explicit semantic analysis (SAESA), is unique in that it generates corresponding concepts to express the intended meaning for the word, according to the different words being compared and the different context. Experimental results on WordSimilarity-353 benchmark dataset show that the proposed method are superior to those of existing methods, the correlation of computed result with human judgment has an improvement from r = 0.74 to 0.81.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于维基百科的语义相关性计算的自适应显式语义分析方法
近年来,显式语义分析(ESA)方法在计算语义相关度(SR)方面取得了不错的成绩。然而,ESA方法没有考虑到给定的词对语境,在不同的词对中对同一个词产生相同的语义概念。它可以准确地确定一个模棱两可的词的意思。本文提出了一种改进的语义相关度计算方法。我们的自适应显式语义分析(SAESA)技术的独特之处在于,它根据被比较的不同单词和不同的上下文,生成相应的概念来表达单词的预期意义。在WordSimilarity-353基准数据集上的实验结果表明,本文方法优于现有方法,计算结果与人类判断的相关性从r = 0.74提高到0.81。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of the Uncertain Resource Objects in the Network Resource Management A Distributed Platform Based on HBWSP&XML for Net Resources Sharing The Framework of Total Decision Support Based on Knowledge Management The Study on Spatial Data of Across-district Emergency Response Information Sharing System How to Identify Equity Market Timing Risk: Case Study of Ping an Insurance's Financing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1