Extending the CMHD Compact Data Structure to Compute Aggregations over Data Warehouses

Fernando Linco, Mónica Caniupán
{"title":"Extending the CMHD Compact Data Structure to Compute Aggregations over Data Warehouses","authors":"Fernando Linco, Mónica Caniupán","doi":"10.1109/SCCC.2018.8705230","DOIUrl":null,"url":null,"abstract":"Compact data structures are data structures that allow compacting data without losing the ability of querying them in their compact form. We present algorithms to extend the functionality of the compact data structure CMHD (Compact representation of Multidimensional data on Hierarchical Domains), which allows the computation of aggregate queries with SUM function on multidimensional matrices. We implement the rest of aggregate functions, i.e., functions MIN , MAX , COUNT and AVG . We use the CMHD over Data Warehouses (DWs), that are collection of data organized to support the decision-making process. The improvement of efficiency of query processing in DWs is a very important issue. Therefore, various efforts have been made in that direction, such as materialization of views, use of indexes, among others. We show through experimentation over DWs with synthetic data, that by using a compact representation of DWs, we can achieve better performance in processing aggregate queries.","PeriodicalId":235495,"journal":{"name":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2018.8705230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Compact data structures are data structures that allow compacting data without losing the ability of querying them in their compact form. We present algorithms to extend the functionality of the compact data structure CMHD (Compact representation of Multidimensional data on Hierarchical Domains), which allows the computation of aggregate queries with SUM function on multidimensional matrices. We implement the rest of aggregate functions, i.e., functions MIN , MAX , COUNT and AVG . We use the CMHD over Data Warehouses (DWs), that are collection of data organized to support the decision-making process. The improvement of efficiency of query processing in DWs is a very important issue. Therefore, various efforts have been made in that direction, such as materialization of views, use of indexes, among others. We show through experimentation over DWs with synthetic data, that by using a compact representation of DWs, we can achieve better performance in processing aggregate queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展CMHD紧凑数据结构以计算数据仓库上的聚合
紧凑数据结构是一种数据结构,它允许压缩数据而不会失去以紧凑形式查询数据的能力。我们提出了扩展紧凑数据结构CMHD(多层域多维数据的紧凑表示)功能的算法,它允许在多维矩阵上使用SUM函数计算聚合查询。我们实现了其余的聚合函数,即函数MIN, MAX, COUNT和AVG。我们在数据仓库(dw)上使用chd, dw是组织起来支持决策过程的数据集合。数据仓库中查询处理效率的提高是一个非常重要的问题。因此,在这个方向上作出了各种努力,例如视图的具体化、索引的使用等等。通过使用合成数据对数据仓库进行实验,我们发现,通过使用数据仓库的紧凑表示,我们可以在处理聚合查询时获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CHAVE: Resource Consolidation with High Availability on Virtualized Environments Constraint Bag Process Model: An Interdisciplinary Process Mining Approach to Lean Construction Extending the CMHD Compact Data Structure to Compute Aggregations over Data Warehouses A Variable Neighbourhood Search Algorithm for the Beam Angle Selection Problem in Radiation Therapy Algorithms for the Unrelated Parallel Machine Scheduling Problem with Sequence Dependent Setup Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1