Adaptive Selection of Helper-Objectives with Reinforcement Learning

Arina Buzdalova, M. Buzdalov
{"title":"Adaptive Selection of Helper-Objectives with Reinforcement Learning","authors":"Arina Buzdalova, M. Buzdalov","doi":"10.1109/ICMLA.2012.159","DOIUrl":null,"url":null,"abstract":"In this paper a previously proposed method of choosing auxiliary fitness functions is applied to adaptive selection of helper-objectives. Helper-objectives are used in evolutionary computation to enhance the optimization of the primary objective. The method based on choosing between objectives of a single-objective evolutionary algorithm with reinforcement learning is briefly described. It is tested on a model problem. From the results of the experiment, it can be concluded that the method allows to automatically select the most effective helper-objectives and ignore the ineffective ones. It is also shown that the proposed method outperforms multi-objective evolutionary algorithms, that were used with helper-objectives originally.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper a previously proposed method of choosing auxiliary fitness functions is applied to adaptive selection of helper-objectives. Helper-objectives are used in evolutionary computation to enhance the optimization of the primary objective. The method based on choosing between objectives of a single-objective evolutionary algorithm with reinforcement learning is briefly described. It is tested on a model problem. From the results of the experiment, it can be concluded that the method allows to automatically select the most effective helper-objectives and ignore the ineffective ones. It is also shown that the proposed method outperforms multi-objective evolutionary algorithms, that were used with helper-objectives originally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的辅助目标自适应选择
本文将先前提出的一种选择辅助适应度函数的方法应用于辅助目标的自适应选择。在进化计算中使用辅助目标来增强对主要目标的优化。简要介绍了一种基于目标选择的单目标强化学习进化算法。它在一个模型问题上进行了测试。实验结果表明,该方法可以自动选择最有效的辅助目标,忽略无效的辅助目标。结果表明,该方法优于原先使用辅助目标的多目标进化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1