{"title":"Taxonomic Dimensionality Reduction in Bayesian Text Classification","authors":"Richard A. McAllister, John W. Sheppard","doi":"10.1109/ICMLA.2012.93","DOIUrl":null,"url":null,"abstract":"Lexical abstraction hierarchies can be leveraged to provide semantic information that characterizes features of text corpora as a whole. This information may be used to determine the classification utility of the dimensions that describe a dataset. This paper presents a new method for preparing a dataset for probabilistic classification by determining, a priori, the utility of a very small subset of taxonomically-related dimensions via a Discriminative Multinomial Naive Bayes process. We show that this method yields significant improvements over both Discriminative Multinomial Naive Bayes and Bayesian network classifiers alone.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lexical abstraction hierarchies can be leveraged to provide semantic information that characterizes features of text corpora as a whole. This information may be used to determine the classification utility of the dimensions that describe a dataset. This paper presents a new method for preparing a dataset for probabilistic classification by determining, a priori, the utility of a very small subset of taxonomically-related dimensions via a Discriminative Multinomial Naive Bayes process. We show that this method yields significant improvements over both Discriminative Multinomial Naive Bayes and Bayesian network classifiers alone.