Ultra-short-term prediction intervals of photovoltaic AC active power

E. Scolari, D. Torregrossa, J.-Y. Le Boudec, M. Paolone
{"title":"Ultra-short-term prediction intervals of photovoltaic AC active power","authors":"E. Scolari, D. Torregrossa, J.-Y. Le Boudec, M. Paolone","doi":"10.1109/PMAPS.2016.7764064","DOIUrl":null,"url":null,"abstract":"The paper describes a heuristic method for the ultra-short-term computation of prediction intervals (PIs) for photovoltaic (PV) power generation. The method allows for directly forecasting the AC active power output of a PV system by simply extracting information from past time series. Two main approaches are investigated. The former relies on experimentally observed correlations between the time derivative of the PV AC active power output and the errors caused by a generic point forecast technique. The latter approach represents an improvement of the first one, where the mentioned correlations are clustered as a function of the value of the AC active power. The work is framed in the context of microgrids and inertialess power systems control, where accounting for the fastest dynamics of the solar irradiance can become extremely valuable. We validate the proposed model using one month of AC active power measurements and for sub-second time horizons: 100, 250 and 500 ms.","PeriodicalId":265474,"journal":{"name":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS.2016.7764064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The paper describes a heuristic method for the ultra-short-term computation of prediction intervals (PIs) for photovoltaic (PV) power generation. The method allows for directly forecasting the AC active power output of a PV system by simply extracting information from past time series. Two main approaches are investigated. The former relies on experimentally observed correlations between the time derivative of the PV AC active power output and the errors caused by a generic point forecast technique. The latter approach represents an improvement of the first one, where the mentioned correlations are clustered as a function of the value of the AC active power. The work is framed in the context of microgrids and inertialess power systems control, where accounting for the fastest dynamics of the solar irradiance can become extremely valuable. We validate the proposed model using one month of AC active power measurements and for sub-second time horizons: 100, 250 and 500 ms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏交流有功功率超短期预测区间
提出了一种光伏发电预测区间超短期计算的启发式方法。该方法通过简单地从过去的时间序列中提取信息,可以直接预测光伏系统的交流有功输出。研究了两种主要方法。前者依赖于实验观察到的PV交流有功功率输出的时间导数与一般点预测技术引起的误差之间的相关性。后一种方法代表了第一种方法的改进,其中提到的相关性作为交流有功功率值的函数聚类。这项工作是在微电网和无惯性电力系统控制的背景下进行的,在这些背景下,对太阳辐照度的最快动态的计算可能变得非常有价值。我们使用一个月的交流有功功率测量和亚秒时间范围(100,250和500 ms)验证了所提出的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A performance and maintenance evaluation framework for wind turbines Transmission network expansion planning with stochastic multivariate load and wind modeling The anomalous data identification study of reactive power optimization system based on big data A resilient power system operation strategy considering presumed attacks The use of Markov chain method to determine spare transformer number with 3-criteria parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1