Experimental investigation and mathematical modelling of heat transfer coefficient in double slope solar still

R. Patel, Anshul Yadav, J. Winczek
{"title":"Experimental investigation and mathematical modelling of heat transfer coefficient in double slope solar still","authors":"R. Patel, Anshul Yadav, J. Winczek","doi":"10.5545/SV-JME.2021.7156","DOIUrl":null,"url":null,"abstract":"n this study, a double slope solar still has been designed and fabricated with the help of locally available materials for the climatic condition of Sultanpur, India. The experimental study was performed to investigate the effect of basin water, wind velocity on the heat transfer coefficient (convective, evaporative, and radiative) and yield of solar still. A mathematical model is developed to understand the impact of wind velocity and basin water depth in the double slope solar still on the heat transfer coefficient. It was found that the convective heat transfer coefficient depends upon the water mass and the temperature of basin mass, and glass cover temperature. The maximum value of hew (55.05 W/(m2K) and 31.80 W/(m2K)) and hcw , (2.48 W/(m2K) and 2.38 W/(m2K)) found for depths of 2 cm and 5 cm, respectively. The radiative heat transfer coefficient found to be a maximum of 8.31 W/(m2K) for 2 cm depth, and it increases as the condensation increases, because the glass surface temperature increases as vapour transfers its energy to the surface. On increasing the depth from 2 cm to 5 cm, the yield from the solar still decreases by 25.45 %. The maximum yield of 2.5 l/m2/day was found for a 2 cm water depth. The theoretical and experimental yield agreed with an error of 7.5 %, 3.25 %, 7.4 %, and 8.4 % for water depths of 2 cm, 3 cm, 4 cm, and 5 cm, respectively. It was also found that the yield from the solar still increases as the wind speed increase because this leads the faster condensation at the glass surface.","PeriodicalId":237575,"journal":{"name":"Strojniški vestnik","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/SV-JME.2021.7156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

n this study, a double slope solar still has been designed and fabricated with the help of locally available materials for the climatic condition of Sultanpur, India. The experimental study was performed to investigate the effect of basin water, wind velocity on the heat transfer coefficient (convective, evaporative, and radiative) and yield of solar still. A mathematical model is developed to understand the impact of wind velocity and basin water depth in the double slope solar still on the heat transfer coefficient. It was found that the convective heat transfer coefficient depends upon the water mass and the temperature of basin mass, and glass cover temperature. The maximum value of hew (55.05 W/(m2K) and 31.80 W/(m2K)) and hcw , (2.48 W/(m2K) and 2.38 W/(m2K)) found for depths of 2 cm and 5 cm, respectively. The radiative heat transfer coefficient found to be a maximum of 8.31 W/(m2K) for 2 cm depth, and it increases as the condensation increases, because the glass surface temperature increases as vapour transfers its energy to the surface. On increasing the depth from 2 cm to 5 cm, the yield from the solar still decreases by 25.45 %. The maximum yield of 2.5 l/m2/day was found for a 2 cm water depth. The theoretical and experimental yield agreed with an error of 7.5 %, 3.25 %, 7.4 %, and 8.4 % for water depths of 2 cm, 3 cm, 4 cm, and 5 cm, respectively. It was also found that the yield from the solar still increases as the wind speed increase because this leads the faster condensation at the glass surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双斜面太阳蒸馏器传热系数的实验研究与数学建模
在这项研究中,根据印度Sultanpur的气候条件,在当地可用材料的帮助下,设计和制造了一个双斜面太阳能塔。通过实验研究了盆水、风速对太阳能蒸馏器对流、蒸发、辐射传热系数和产率的影响。建立了双斜面太阳蒸馏器中风速和盆水深度对传热系数影响的数学模型。研究发现,对流换热系数与水质量、盆质量温度和玻璃盖温度有关。深度为2 cm和5 cm时,hew的最大值分别为55.05 W/(m2K)和31.80 W/(m2K), hcw的最大值分别为2.48 W/(m2K)和2.38 W/(m2K)。在2 cm深度处,辐射换热系数最大,为8.31 W/(m2K),并且随着冷凝的增加而增加,这是由于蒸汽将其能量转移到玻璃表面而使玻璃表面温度升高。当深度从2 cm增加到5 cm时,太阳能产率仍下降25.45%。当水深为2 cm时,产量最高可达2.5 l/m2/d。在水深为2 cm、3 cm、4 cm和5 cm时,理论和实验结果的误差分别为7.5%、3.25%、7.4%和8.4%。研究还发现,随着风速的增加,太阳能的产率仍然增加,因为这导致玻璃表面的冷凝更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Optimization of an Umbrella-Type Shield Based on 3D CFD Simulation Technology Optimization of Abrasive Waterjet Cutting by Using the CODAS Method with Regard to Interdependent Processing Parameters Research on an Analytical Method for the Forming Force of External Spline Cold Roll-Beating Fuzzy and Matlab/Simulink Modelling of the Air Compression Refrigeration Cycle Mechanical and Microstructural Properties of B4C/W Reinforced Copper Matrix Composite Using a Friction Stir-Welding Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1