{"title":"Perception-aware Receding Horizon Path Planning for UAVs with LiDAR-based SLAM","authors":"Reiya Takemura, G. Ishigami","doi":"10.1109/MFI55806.2022.9913848","DOIUrl":null,"url":null,"abstract":"This paper presents a perception-aware path planning framework for unmanned aerial vehicles (UAVs) that explicitly considers perception quality of a light detection and ranging (LiDAR) sensor. The perception quality is quantified based on how scattered feature points are in LiDAR-based simultaneous localization and mapping, which can improve the accuracy of pose estimation of UAVs. In the planning step of a UAV, the proposed framework selects the best path based on the perception quality from a library of candidate paths generated by the rapidly-exploring random trees algorithm. Consequently, the UAV can autonomously fly to a destination in a receding horizon manner. Several simulation trials of the photorealistic environments confirm that our proposed path planner reduces pose estimation error by approximately 85 % on average as compared with a purely-reactive path planner.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"558 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a perception-aware path planning framework for unmanned aerial vehicles (UAVs) that explicitly considers perception quality of a light detection and ranging (LiDAR) sensor. The perception quality is quantified based on how scattered feature points are in LiDAR-based simultaneous localization and mapping, which can improve the accuracy of pose estimation of UAVs. In the planning step of a UAV, the proposed framework selects the best path based on the perception quality from a library of candidate paths generated by the rapidly-exploring random trees algorithm. Consequently, the UAV can autonomously fly to a destination in a receding horizon manner. Several simulation trials of the photorealistic environments confirm that our proposed path planner reduces pose estimation error by approximately 85 % on average as compared with a purely-reactive path planner.