Efficient fuzzy modeling and evaluation criteria

S. Matsushita, T. Furuhashi, H. Tsutsui, Y. Uchikawa
{"title":"Efficient fuzzy modeling and evaluation criteria","authors":"S. Matsushita, T. Furuhashi, H. Tsutsui, Y. Uchikawa","doi":"10.1109/KES.1997.616921","DOIUrl":null,"url":null,"abstract":"Hierarchical fuzzy modeling using fuzzy neural networks (FNN) is one of the effective approaches for modeling of nonlinear systems. Decision of antecedent structures of fuzzy models of nonlinear systems is made possible by a combination of FNN and genetic algorithm (GA). The disadvantage of this fuzzy modeling method is that the learning of FNN is time consuming. This paper presents an efficient fuzzy modeling method using simple fuzzy inference. The results of fuzzy modeling are heavily dependent on evaluation criteria. This paper also studies effects of evaluation criteria for the decision of the antecedent structure. Numerical experiments are done.","PeriodicalId":166931,"journal":{"name":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1997.616921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hierarchical fuzzy modeling using fuzzy neural networks (FNN) is one of the effective approaches for modeling of nonlinear systems. Decision of antecedent structures of fuzzy models of nonlinear systems is made possible by a combination of FNN and genetic algorithm (GA). The disadvantage of this fuzzy modeling method is that the learning of FNN is time consuming. This paper presents an efficient fuzzy modeling method using simple fuzzy inference. The results of fuzzy modeling are heavily dependent on evaluation criteria. This paper also studies effects of evaluation criteria for the decision of the antecedent structure. Numerical experiments are done.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效的模糊建模和评价标准
利用模糊神经网络(FNN)进行层次模糊建模是非线性系统建模的有效方法之一。将模糊神经网络(FNN)与遗传算法(GA)相结合,实现了非线性系统模糊模型的先验结构决策。这种模糊建模方法的缺点是模糊神经网络的学习耗时长。本文提出了一种基于简单模糊推理的高效模糊建模方法。模糊建模的结果很大程度上依赖于评价标准。本文还研究了评价标准对先行词结构决策的影响。并进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy control system applied to pump start in a petroleum plant Classification of symbolic data using fuzzy set theory Fuzzy agents for reactive navigation of a mobile robot Fuzzy neural network for fuzzy modeling and control Efficient fuzzy modeling and evaluation criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1