GPGPU performance evaluation of some basic molecular dynamics algorithms

A. Minkin, A. Teslyuk, A. Knizhnik, B. Potapkin
{"title":"GPGPU performance evaluation of some basic molecular dynamics algorithms","authors":"A. Minkin, A. Teslyuk, A. Knizhnik, B. Potapkin","doi":"10.1109/HPCSim.2015.7237104","DOIUrl":null,"url":null,"abstract":"Molecular dynamics is a computationally intensive problem but it is extremely amenable for parallel computation. Many-body potentials used for modeling of carbon and metallic nanostructures usually require much more computing resources than pair potentials. One of the ways to improve their performance is to transform them for running on computing systems that combines CPU and GPU. In this work OpenCL performance of basic molecular dynamics algorithms such as neighbor list generation along with different implementations of energy-force computation of Lennard-Jones, Tersoff and EAM potentials is evaluated. It is shown that concurrent memory writes are effective for Tersoff bond order potential and are not good for embedded-atom potential. Performance measurements show a significant GPU acceleration of basic molecular dynamics algorithms over the corresponding serial implementations.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Molecular dynamics is a computationally intensive problem but it is extremely amenable for parallel computation. Many-body potentials used for modeling of carbon and metallic nanostructures usually require much more computing resources than pair potentials. One of the ways to improve their performance is to transform them for running on computing systems that combines CPU and GPU. In this work OpenCL performance of basic molecular dynamics algorithms such as neighbor list generation along with different implementations of energy-force computation of Lennard-Jones, Tersoff and EAM potentials is evaluated. It is shown that concurrent memory writes are effective for Tersoff bond order potential and are not good for embedded-atom potential. Performance measurements show a significant GPU acceleration of basic molecular dynamics algorithms over the corresponding serial implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPGPU性能评价的一些基本分子动力学算法
分子动力学是一个计算密集的问题,但它非常适合并行计算。用于碳和金属纳米结构建模的多体势通常比对势需要更多的计算资源。提高它们性能的方法之一是将它们转换为在CPU和GPU结合的计算系统上运行。在这项工作中,OpenCL性能的基本分子动力学算法,如邻居列表生成以及能量-力计算的Lennard-Jones, Tersoff和EAM势的不同实现进行了评估。结果表明,并发存储器写入对键序电位有效,而对嵌入原子电位不利。性能测量显示,相对于相应的串行实现,基本分子动力学算法有显著的GPU加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient performance evaluation of cloud computing applications and dynamic resource control in large-scale distributed systems A security framework for population-scale genomics analysis Deep learning with shallow architecture for image classification A new reality requiers new ecosystems Investigation of DVFS based dynamic reliability management for chip multiprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1