On the EMG-based torque estimation for humans coupled with a force-controlled elbow exoskeleton

J. B. Ullauri, L. Peternel, B. Ugurlu, Yoji Yamada, J. Morimoto
{"title":"On the EMG-based torque estimation for humans coupled with a force-controlled elbow exoskeleton","authors":"J. B. Ullauri, L. Peternel, B. Ugurlu, Yoji Yamada, J. Morimoto","doi":"10.1109/ICAR.2015.7251472","DOIUrl":null,"url":null,"abstract":"Exoskeletons are successful at supporting human motion only when the necessary amount of power is provided at the right time. Exoskeleton control based on EMG signals can be utilized to command the required amount of support in real-time. To this end, one needs to map human muscle activity to the desired task-specific exoskeleton torques. In order to achieve such mapping, this paper analyzes two distinct methods to estimate the human-elbow-joint torque based on the related muscle activity. The first model is adopted from pneumatic artificial muscles (PAMs). The second model is based on a machine learning method known as Gaussian Process Regression (GPR). The performance of both approaches were assessed based on their ability to estimate the elbow-joint torque of two able-bodied subjects using EMG signals that were collected from biceps and triceps muscles. The experiments suggest that the GPR-based approach provides relatively more favorable predictions.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Exoskeletons are successful at supporting human motion only when the necessary amount of power is provided at the right time. Exoskeleton control based on EMG signals can be utilized to command the required amount of support in real-time. To this end, one needs to map human muscle activity to the desired task-specific exoskeleton torques. In order to achieve such mapping, this paper analyzes two distinct methods to estimate the human-elbow-joint torque based on the related muscle activity. The first model is adopted from pneumatic artificial muscles (PAMs). The second model is based on a machine learning method known as Gaussian Process Regression (GPR). The performance of both approaches were assessed based on their ability to estimate the elbow-joint torque of two able-bodied subjects using EMG signals that were collected from biceps and triceps muscles. The experiments suggest that the GPR-based approach provides relatively more favorable predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合力控肘外骨骼的肌电转矩估计研究
只有在适当的时候提供必要的能量,外骨骼才能成功地支持人类的运动。基于肌电图信号的外骨骼控制可用于实时控制所需的支持量。为此,需要将人体肌肉活动映射到所需的任务特定外骨骼扭矩。为了实现这种映射,本文分析了基于相关肌肉活动估计人体肘关节扭矩的两种不同方法。第一种模型采用气动人工肌肉(PAMs)。第二个模型基于一种被称为高斯过程回归(GPR)的机器学习方法。两种方法的性能都是基于它们使用从二头肌和三头肌收集的肌电图信号来估计两个健全受试者的肘关节扭矩的能力来评估的。实验表明,基于gpr的方法提供了相对更有利的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the EMG-based torque estimation for humans coupled with a force-controlled elbow exoskeleton The KIT whole-body human motion database Visual matching of stroke order in robotic calligraphy Real-time motion adaptation using relative distance space representation Optimization of the switching surface for the simplest passive dynamic biped
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1