Comparative Analysis of Single Classifier Models against Aggregated Fusion Models for Heart Disease Prediction

Naman Goel, Nikhil Prabhat Yadav, Prakarti Prakarti, Anukul Pandey
{"title":"Comparative Analysis of Single Classifier Models against Aggregated Fusion Models for Heart Disease Prediction","authors":"Naman Goel, Nikhil Prabhat Yadav, Prakarti Prakarti, Anukul Pandey","doi":"10.1109/ICDT57929.2023.10150611","DOIUrl":null,"url":null,"abstract":"The current focus of research is on using machine learning (ML) algorithms to predict heart disease. Using the UC Irvine (UCI) Cleveland Heart Disease dataset, this study investigates the effectiveness of various types of classifiers, including K-Nearest Neighbours (KNN), AdaBoost, Gaussian Naïve Bayes (GNB), support vector machines (SVM), multilayer perceptron (MLP) and random forests. The objective of this study is to assess the precision and speed of each classifier and gauge their effectiveness by utilizing measures like accuracy and F1 score for comparison. The study also looks into the potential benefits of fusion methods for improving the accuracy of heart disease prediction. The study concludes that combining various models could lead to improving the metrics. Our study contributes to the ongoing research on heart disease prediction using ML algorithms. The findings of our study can be used to develop more precise models for predicting heart disease, which can aid in improving clinical decision-making for heart disease prevention and treatment.","PeriodicalId":266681,"journal":{"name":"2023 International Conference on Disruptive Technologies (ICDT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Disruptive Technologies (ICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDT57929.2023.10150611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current focus of research is on using machine learning (ML) algorithms to predict heart disease. Using the UC Irvine (UCI) Cleveland Heart Disease dataset, this study investigates the effectiveness of various types of classifiers, including K-Nearest Neighbours (KNN), AdaBoost, Gaussian Naïve Bayes (GNB), support vector machines (SVM), multilayer perceptron (MLP) and random forests. The objective of this study is to assess the precision and speed of each classifier and gauge their effectiveness by utilizing measures like accuracy and F1 score for comparison. The study also looks into the potential benefits of fusion methods for improving the accuracy of heart disease prediction. The study concludes that combining various models could lead to improving the metrics. Our study contributes to the ongoing research on heart disease prediction using ML algorithms. The findings of our study can be used to develop more precise models for predicting heart disease, which can aid in improving clinical decision-making for heart disease prevention and treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单一分类器模型与聚合融合模型在心脏病预测中的比较分析
目前的研究重点是使用机器学习(ML)算法来预测心脏病。利用加州大学欧文分校(UCI)克利夫兰心脏病数据集,本研究调查了各种类型分类器的有效性,包括k -近邻(KNN), AdaBoost,高斯Naïve贝叶斯(GNB),支持向量机(SVM),多层感知器(MLP)和随机森林。本研究的目的是评估每个分类器的精度和速度,并通过使用准确度和F1分数等指标进行比较来衡量它们的有效性。该研究还探讨了融合方法在提高心脏病预测准确性方面的潜在益处。该研究的结论是,将各种模型结合起来可以改善指标。我们的研究有助于正在进行的使用ML算法预测心脏病的研究。我们的研究结果可用于开发更精确的心脏病预测模型,有助于改善心脏病预防和治疗的临床决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Best Ways Using AI in Impacting Success on MBA Graduates A Mechanism Used to Predict Diet Consumption and Stress Management in Humans Using IoMT ICDT 2023 Cover Page Machine Learning-Based Approach for Hand Gesture Recognition A Smart Innovation of Business Intelligence Based Analytical Model by Using POS Based Deep Learning Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1