{"title":"Efficient class-E power amplifier for variable load operation","authors":"D. Vegas, Felipe Moreno, M. Ruiz, J. A. García","doi":"10.1109/INMMIC.2017.7927319","DOIUrl":null,"url":null,"abstract":"In this paper, a GaN HEMT class-E power amplifier (PA) has been designed for efficiently operating under variable load resistance at the 750 MHz frequency band. The desired zero voltage switching (ZVS) of the device can be approximated for a wide range of resistive loads, by means of a simple inductive impedance inverter, derived from [1]. The load-pull contours, obtained from simulations, allowed the drain terminating network to be properly adjusted in order to maximize the output power control while at the same time minimizing losses. Once the amplifier was implemented, an efficiency over 76% has been measured at 9.6 dB power back-off, with a peak of 85% at 50 Ω. In addition, the efficiency stays as high as 75% for a 150 MHz frequency range.","PeriodicalId":322300,"journal":{"name":"2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMMIC.2017.7927319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, a GaN HEMT class-E power amplifier (PA) has been designed for efficiently operating under variable load resistance at the 750 MHz frequency band. The desired zero voltage switching (ZVS) of the device can be approximated for a wide range of resistive loads, by means of a simple inductive impedance inverter, derived from [1]. The load-pull contours, obtained from simulations, allowed the drain terminating network to be properly adjusted in order to maximize the output power control while at the same time minimizing losses. Once the amplifier was implemented, an efficiency over 76% has been measured at 9.6 dB power back-off, with a peak of 85% at 50 Ω. In addition, the efficiency stays as high as 75% for a 150 MHz frequency range.