{"title":"An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model","authors":"Diana-Lucia Miholca","doi":"10.1109/SYNASC.2018.00074","DOIUrl":null,"url":null,"abstract":"Software defect prediction is an intricate but essential software testing related activity. As a solution to it, we have recently proposed HyGRAR, a hybrid classification model which combines Gradual Relational Association Rules (GRARs) with ANNs. ANNs were used to learn gradual relations that were then considered in a mining process so as to discover the interesting GRARs characterizing the defective and non-defective software entities, respectively. The classification of a new entity based on the discriminative GRARs was made through a non-adaptive heuristic method. In current paper, we propose to enhance HyGRAR through autonomously learning the classification methodology. Evaluation experiments performed on two open-source data sets indicate that the enhanced HyGRAR classifier outperforms the related approaches evaluated on the same two data sets.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Software defect prediction is an intricate but essential software testing related activity. As a solution to it, we have recently proposed HyGRAR, a hybrid classification model which combines Gradual Relational Association Rules (GRARs) with ANNs. ANNs were used to learn gradual relations that were then considered in a mining process so as to discover the interesting GRARs characterizing the defective and non-defective software entities, respectively. The classification of a new entity based on the discriminative GRARs was made through a non-adaptive heuristic method. In current paper, we propose to enhance HyGRAR through autonomously learning the classification methodology. Evaluation experiments performed on two open-source data sets indicate that the enhanced HyGRAR classifier outperforms the related approaches evaluated on the same two data sets.