{"title":"Review of phase change materials as an environmental approach for postharvest fruit and vegetable cold storage","authors":"Tuğba Güngör Ertuğral","doi":"10.56768/jytp.1.1.04","DOIUrl":null,"url":null,"abstract":"Today, almost half of the cultivated products are lost before they even reach the consumption stage. Data show that one-third of food never reaches the end consumer. It is known that 50% of these losses are caused by technical errors related to control and temperature management. Reducing post-harvest losses will play an important role in the sustainable feeding of the world's population in the future. From this point of view, preventing or at least minimizing the loss of fresh fruits and vegetables has become an important issue. Cold storage with petroleum fuels and electrical energy is costly and causes environmental pollution. Recently, phase change material (PCM), which is a clean, environmentally friendly and renewable energy source, is an interesting material in this field. PCM s are capable of storing the ambient heat as latent heat energy and returning the latent heat energy they have stored during temperature rises and falls to the environment. With a PCM with the right phase change temperature range, it can provide maximum energy savings and an economical storage system by working as low and high temperature barriers, as well as an environmentally friendly cooling that reduces carbon emissions. This study is a compilation research examining the storage with thermal energy storage, which is a new generation, energy-saving environmentally friendly method, which includes PCMs that can be preferred for cold storage of fruits and vegetables after harvest.","PeriodicalId":184333,"journal":{"name":"JOURNAL OF GLOBAL CLIMATE CHANGE","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF GLOBAL CLIMATE CHANGE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56768/jytp.1.1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Today, almost half of the cultivated products are lost before they even reach the consumption stage. Data show that one-third of food never reaches the end consumer. It is known that 50% of these losses are caused by technical errors related to control and temperature management. Reducing post-harvest losses will play an important role in the sustainable feeding of the world's population in the future. From this point of view, preventing or at least minimizing the loss of fresh fruits and vegetables has become an important issue. Cold storage with petroleum fuels and electrical energy is costly and causes environmental pollution. Recently, phase change material (PCM), which is a clean, environmentally friendly and renewable energy source, is an interesting material in this field. PCM s are capable of storing the ambient heat as latent heat energy and returning the latent heat energy they have stored during temperature rises and falls to the environment. With a PCM with the right phase change temperature range, it can provide maximum energy savings and an economical storage system by working as low and high temperature barriers, as well as an environmentally friendly cooling that reduces carbon emissions. This study is a compilation research examining the storage with thermal energy storage, which is a new generation, energy-saving environmentally friendly method, which includes PCMs that can be preferred for cold storage of fruits and vegetables after harvest.