A hyper-sphere SVM introduced the margin

Xinfeng Zhang, Zhuo Li, Dagan Feng
{"title":"A hyper-sphere SVM introduced the margin","authors":"Xinfeng Zhang, Zhuo Li, Dagan Feng","doi":"10.1109/ICNNSP.2008.4590395","DOIUrl":null,"url":null,"abstract":"Binary hyper-sphere support vector machine (SVM) is a new method for data description. Its weakness is that the margin between two classes of samples is zero or an uncertain value, which affects the classifier's generalization performance to some extent. So a generalized hyper-sphere SVM (GHSSVM) is provided in this paper. By introducing the parameter n and b (n>b), the margin which is greater than zero may be obtained. The experimental results show the proposed classifier may have better generalization performance and the less experimental risk than the hyper-sphere SVM in the references.","PeriodicalId":250993,"journal":{"name":"2008 International Conference on Neural Networks and Signal Processing","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Neural Networks and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2008.4590395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Binary hyper-sphere support vector machine (SVM) is a new method for data description. Its weakness is that the margin between two classes of samples is zero or an uncertain value, which affects the classifier's generalization performance to some extent. So a generalized hyper-sphere SVM (GHSSVM) is provided in this paper. By introducing the parameter n and b (n>b), the margin which is greater than zero may be obtained. The experimental results show the proposed classifier may have better generalization performance and the less experimental risk than the hyper-sphere SVM in the references.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个超球面支持向量机引入了余量
二元超球支持向量机(SVM)是一种新的数据描述方法。它的缺点是两类样本之间的余量为零或不确定值,这在一定程度上影响了分类器的泛化性能。为此,本文提出了一种广义超球支持向量机(GHSSVM)。通过引入参数n和b (n>b),可以得到大于零的余量。实验结果表明,与文献中的超球支持向量机相比,该分类器具有更好的泛化性能和更小的实验风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the architecture of H.264 to H.264 homogeneous transcoding platform The study of signal simulation based on the passive radar seeker A blind super-resolution framework considering the sensor PSF Hyper chaos synchronization shift keying (HCSSK) modulation and demodulation in wireless communications An “out of head” sound field enhancement system for headphone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1