Visualizing weakly-Annotated Multi-label Mayan Inscriptions with Supervised t-SNE

E. Román-Rangel, S. Marchand-Maillet
{"title":"Visualizing weakly-Annotated Multi-label Mayan Inscriptions with Supervised t-SNE","authors":"E. Román-Rangel, S. Marchand-Maillet","doi":"10.1145/3095713.3095720","DOIUrl":null,"url":null,"abstract":"We present a supervised dimensionality reduction technique suitable for visualizing multi-label images on a 2-D space. This method extends the use of the well-known t-distributed stochastic embedding (t-SNE) algorithm to the case of multi-labels instances, where the concept of partial relevance plays an important role. Furthermore, it is applicable straightaway for weakly annotated data. We apply our approach to generate 2-D representations of Mayan glyph-blocks, which are groups of individual glyph-signs expressing full sentences. The resulting representations are used to place visual instances in a 2-D space with the purpose of providing a browsable catalog for further epigraphic studies, where nearby instances are similar both in semantic and visual terms. We evaluate the performance of our approach quantitatively by performing classification and retrieval experiments. Our results show that this approach obtains high performance in both of these tasks.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a supervised dimensionality reduction technique suitable for visualizing multi-label images on a 2-D space. This method extends the use of the well-known t-distributed stochastic embedding (t-SNE) algorithm to the case of multi-labels instances, where the concept of partial relevance plays an important role. Furthermore, it is applicable straightaway for weakly annotated data. We apply our approach to generate 2-D representations of Mayan glyph-blocks, which are groups of individual glyph-signs expressing full sentences. The resulting representations are used to place visual instances in a 2-D space with the purpose of providing a browsable catalog for further epigraphic studies, where nearby instances are similar both in semantic and visual terms. We evaluate the performance of our approach quantitatively by performing classification and retrieval experiments. Our results show that this approach obtains high performance in both of these tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于监督t-SNE的弱标注多标签玛雅铭文可视化
我们提出了一种适用于在二维空间上可视化多标签图像的监督降维技术。该方法将众所周知的t分布随机嵌入(t-SNE)算法的使用扩展到多标签实例的情况,其中部分相关的概念起着重要作用。此外,它直接适用于带弱注释的数据。我们应用我们的方法来生成玛雅象形块的二维表示,这是一组表达完整句子的单个象形符号。结果表示用于将可视化实例放置在二维空间中,目的是为进一步的铭文研究提供可浏览的目录,其中附近的实例在语义和视觉方面都是相似的。我们通过执行分类和检索实验来定量评估我们的方法的性能。我们的结果表明,这种方法在这两个任务中都获得了很高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tag Propagation Approaches within Speaking Face Graphs for Multimodal Person Discovery A free Web API for single and multi-document summarization Visualizing weakly-Annotated Multi-label Mayan Inscriptions with Supervised t-SNE Prediction of User Demographics from Music Listening Habits Detecting adversarial example attacks to deep neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1