Automated Technique for Segmentation of Brain Tumor in MR Images

Rakshanda M. Mapari, H. G. Virani
{"title":"Automated Technique for Segmentation of Brain Tumor in MR Images","authors":"Rakshanda M. Mapari, H. G. Virani","doi":"10.1109/ICOEI.2019.8862531","DOIUrl":null,"url":null,"abstract":"Cerebrum Tumor is the unusual or unrestrained cell division within the brain. The remedial problems are serious if tumors are not diagnosed at early stage inevitably most timely examination is necessary. This paper deals with detection of tumor region by Morphological Operators based segmentation approach. It contains upgrade, partition and positioning stages. To extract the tumor region the images are partitioned and order by categorizing them into Benign and Malignant. In case if there are more number of images, doctors could save time by using this approach.","PeriodicalId":212501,"journal":{"name":"2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOEI.2019.8862531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cerebrum Tumor is the unusual or unrestrained cell division within the brain. The remedial problems are serious if tumors are not diagnosed at early stage inevitably most timely examination is necessary. This paper deals with detection of tumor region by Morphological Operators based segmentation approach. It contains upgrade, partition and positioning stages. To extract the tumor region the images are partitioned and order by categorizing them into Benign and Malignant. In case if there are more number of images, doctors could save time by using this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁共振图像中脑肿瘤的自动分割技术
脑瘤是大脑内不寻常的或不受限制的细胞分裂。如果肿瘤不及早诊断,治疗问题严重,不可避免地需要最及时的检查。本文研究了基于形态学算子的肿瘤区域分割方法。它包含升级、分区和定位三个阶段。为了提取肿瘤区域,将图像分为良性和恶性两类进行分割和排序。在图像数量较多的情况下,使用这种方法可以节省医生的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artery and Vein classification for hypertensive retinopathy Biometric Personal Iris Recognition from an Image at Long Distance Iris Recognition Using Visible Wavelength Light Source and Near Infrared Light Source Image Database: A Short Survey□ Brain Computer Interface Based Smart Environment Control IoT Based Smart Gas Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1