Dynamic Channel Selection for Real-Time Safety Message Communication in Vehicular Networks

Yunhao Bai, Kuangyu Zheng, Zejiang Wang, Xiaorui Wang, Junmin Wang
{"title":"Dynamic Channel Selection for Real-Time Safety Message Communication in Vehicular Networks","authors":"Yunhao Bai, Kuangyu Zheng, Zejiang Wang, Xiaorui Wang, Junmin Wang","doi":"10.1109/RTSS.2018.00016","DOIUrl":null,"url":null,"abstract":"Ensuring the real-time delivery of safety messages is an important research problem for Vehicle to Vehicle (V2V) communication. Unfortunately, existing work relies only on one or two pre-selected control channels for safety message communication, which can result in poor packet delivery and potential accident when the vehicle density is high. If all the available channels can be dynamically utilized when the control channel is having severe contention, safety messages can have a much better chance to meet their real-time deadlines. In this paper, we propose MC-Safe, a multi-channel V2V communication framework that monitors all the available channels and dynamically selects the best one for safety message transmission. MC-Safe features a novel channel negotiation scheme that allows all the vehicles involved in a potential accident to work collaboratively, in a distributed manner, for identifying a communication channel that meets the delay requirement. Our evaluation results both in simulation and on a hardware testbed with scaled cars show that MC-Safe outperforms existing single-channel solutions and other well-designed multi-channel baselines by having a 12.31% lower deadline miss ratio and an 8.21% higher packet delivery ratio on average.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Ensuring the real-time delivery of safety messages is an important research problem for Vehicle to Vehicle (V2V) communication. Unfortunately, existing work relies only on one or two pre-selected control channels for safety message communication, which can result in poor packet delivery and potential accident when the vehicle density is high. If all the available channels can be dynamically utilized when the control channel is having severe contention, safety messages can have a much better chance to meet their real-time deadlines. In this paper, we propose MC-Safe, a multi-channel V2V communication framework that monitors all the available channels and dynamically selects the best one for safety message transmission. MC-Safe features a novel channel negotiation scheme that allows all the vehicles involved in a potential accident to work collaboratively, in a distributed manner, for identifying a communication channel that meets the delay requirement. Our evaluation results both in simulation and on a hardware testbed with scaled cars show that MC-Safe outperforms existing single-channel solutions and other well-designed multi-channel baselines by having a 12.31% lower deadline miss ratio and an 8.21% higher packet delivery ratio on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车载网络安全信息实时通信的动态信道选择
确保安全信息的实时传递是车对车(V2V)通信的重要研究问题。然而,现有的工作仅依赖于一个或两个预先选择的控制通道进行安全信息通信,当车辆密度较大时,这可能导致数据包传递不佳和潜在的事故。如果在控制通道发生严重争用时可以动态地利用所有可用通道,那么安全消息就有更好的机会满足其实时截止日期。在本文中,我们提出了MC-Safe,一个多通道V2V通信框架,监控所有可用的通道,并动态选择最佳的安全消息传输。MC-Safe采用了一种新颖的通道协商方案,允许所有涉及潜在事故的车辆以分布式方式协同工作,以确定满足延迟要求的通信通道。我们在模拟和硬件测试平台上的评估结果表明,MC-Safe比现有的单通道解决方案和其他设计良好的多通道基线有12.31%的低截止日期失误率和8.21%的高数据包投递率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NoCo: ILP-Based Worst-Case Contention Estimation for Mesh Real-Time Manycores Distributed Real-Time Shortest-Paths Computations with the Field Calculus Dynamic Channel Selection for Real-Time Safety Message Communication in Vehicular Networks An Efficient Knapsack-Based Approach for Calculating the Worst-Case Demand of AVR Tasks Schedulability Analysis of Adaptive Variable-Rate Tasks with Dynamic Switching Speeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1