{"title":"Single-Snapshot Direction-of-Arrival Estimation of Multiple Targets using a Multi-Layer Perceptron","authors":"Jonas Fuchs, R. Weigel, M. Gardill","doi":"10.1109/ICMIM.2019.8726554","DOIUrl":null,"url":null,"abstract":"An alternative approach to high-resolution direction-of-arrival estimation in the context of automotive FMCW signal processing is shown by training a neural network with simulation as well as experimental data to estimate the mean and distance of the azimuth angles from two targets. Testing results are post-processed to obtain the estimated azimuth angles which can be validated afterwards. The performance of the proposed neural network is then compared with a reference implementation of a maximum likelihood estimator. Final evaluations show super-resolution like performance with significantly reduced computation time, which is expected to have an impact on future multi-dimensional high-resolution DoA estimation.","PeriodicalId":225972,"journal":{"name":"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM.2019.8726554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
An alternative approach to high-resolution direction-of-arrival estimation in the context of automotive FMCW signal processing is shown by training a neural network with simulation as well as experimental data to estimate the mean and distance of the azimuth angles from two targets. Testing results are post-processed to obtain the estimated azimuth angles which can be validated afterwards. The performance of the proposed neural network is then compared with a reference implementation of a maximum likelihood estimator. Final evaluations show super-resolution like performance with significantly reduced computation time, which is expected to have an impact on future multi-dimensional high-resolution DoA estimation.