LDA based classification of video surveillance sequences using motion information

A. Diop, S. Meza, M. Gordan, A. Vlaicu
{"title":"LDA based classification of video surveillance sequences using motion information","authors":"A. Diop, S. Meza, M. Gordan, A. Vlaicu","doi":"10.23919/ICACT.2018.8323807","DOIUrl":null,"url":null,"abstract":"Video surveillance is one of the key components in todays' public security. The possibility to identify abnormal events in such sequences is a difficult problem in computer vision with the aim of providing automatic means of analysis. The use of Latent Dirichlet Allocation (LDA) provided encouraging results for topic classification in text documents and extensions to the video range have already been presented in the literature. The paper approaches video sequence classification considering the extension of the LDA model by building a vocabulary based on motion information “words” that are used to isolate events/topics present in the video. The implementation is tested on the PETS datasets and results are compared with state of the art.","PeriodicalId":228625,"journal":{"name":"2018 20th International Conference on Advanced Communication Technology (ICACT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2018.8323807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Video surveillance is one of the key components in todays' public security. The possibility to identify abnormal events in such sequences is a difficult problem in computer vision with the aim of providing automatic means of analysis. The use of Latent Dirichlet Allocation (LDA) provided encouraging results for topic classification in text documents and extensions to the video range have already been presented in the literature. The paper approaches video sequence classification considering the extension of the LDA model by building a vocabulary based on motion information “words” that are used to isolate events/topics present in the video. The implementation is tested on the PETS datasets and results are compared with state of the art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LDA的运动信息视频监控序列分类
视频监控是当今公共安全的关键组成部分之一。如何在这些序列中识别异常事件是计算机视觉中的一个难题,其目的是提供自动分析手段。潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)的使用为文本文档的主题分类提供了令人鼓舞的结果,并且视频范围的扩展已经在文献中提出。本文通过构建一个基于运动信息“词”的词汇表来隔离视频中出现的事件/主题,从而考虑到LDA模型的扩展来处理视频序列分类。在pet数据集上对实现进行了测试,并将结果与最先进的技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A cooperative trilateration technique for object localization SvgAI — Training artificial intelligent agent to use SVG editor EEG-signals based cognitive workload detection of vehicle driver using deep learning What are the optimum quasi-identifiers to re-identify medical records? Customized embedded system design for lower limb rehabilitation patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1