A semi-tensor product approach for Probabilistic Boolean Networks

Xiaoqing Cheng, Yushan Qiu, Wenpin Hou, W. Ching
{"title":"A semi-tensor product approach for Probabilistic Boolean Networks","authors":"Xiaoqing Cheng, Yushan Qiu, Wenpin Hou, W. Ching","doi":"10.1109/ISB.2014.6990737","DOIUrl":null,"url":null,"abstract":"Modeling genetic regulatory networks is an important issue in systems biology. Various models and mathematical formalisms have been proposed in the literature to solve the capture problem. The main purpose in this paper is to show that the transition matrix generated under semi-tensor product approach (Here we call it the probability structure matrix for simplicity) and the traditional approach (Transition probability matrix) are similar to each other. And we shall discuss three important problems in Probabilistic Boolean Networks (PBNs): the dynamic of a PBN, the steady-state probability distribution and the inverse problem. Numerical examples are given to show the validity of our theory. We shall give a brief introduction to semi-tensor and its application. After that we shall focus on the main results: to show the similarity of these two matrices. Since the semi-tensor approach gives a new way for interpreting a BN and therefore a PBN, we expect that advanced algorithms can be developed if one can describe the PBN through semi-tensor product approach.","PeriodicalId":249103,"journal":{"name":"2014 8th International Conference on Systems Biology (ISB)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2014.6990737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Modeling genetic regulatory networks is an important issue in systems biology. Various models and mathematical formalisms have been proposed in the literature to solve the capture problem. The main purpose in this paper is to show that the transition matrix generated under semi-tensor product approach (Here we call it the probability structure matrix for simplicity) and the traditional approach (Transition probability matrix) are similar to each other. And we shall discuss three important problems in Probabilistic Boolean Networks (PBNs): the dynamic of a PBN, the steady-state probability distribution and the inverse problem. Numerical examples are given to show the validity of our theory. We shall give a brief introduction to semi-tensor and its application. After that we shall focus on the main results: to show the similarity of these two matrices. Since the semi-tensor approach gives a new way for interpreting a BN and therefore a PBN, we expect that advanced algorithms can be developed if one can describe the PBN through semi-tensor product approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率布尔网络的半张量积方法
遗传调控网络建模是系统生物学中的一个重要问题。文献中提出了各种模型和数学形式来解决捕获问题。本文的主要目的是证明在半张量积方法下生成的转移矩阵(这里为简单起见我们称之为概率结构矩阵)与传统方法(转移概率矩阵)是相似的。讨论了概率布尔网络中的三个重要问题:概率布尔网络的动态性、稳态概率分布和逆问题。数值算例表明了理论的有效性。我们将简要介绍半张量及其应用。之后,我们将关注主要结果:显示这两个矩阵的相似性。由于半张量方法提供了一种解释BN和PBN的新方法,因此我们期望如果可以通过半张量积方法描述PBN,就可以开发出先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological characterization of housekeeping genes in human protein-protein interaction network The correlation and regression analysis on aerosol optical depth, ice cover and cloud cover in Greenland Sea A semi-tensor product approach for Probabilistic Boolean Networks VaccineWatch: a monitoring system of vaccine messages from social media data Evolution analysis for HA gene of human influenza A H3N2 virus (1990 – 2013)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1