Object detection and depth estimation for 3D trajectory extraction

Zeyd Boukhers, Kimiaki Shirahama, Frédéric Li, M. Grzegorzek
{"title":"Object detection and depth estimation for 3D trajectory extraction","authors":"Zeyd Boukhers, Kimiaki Shirahama, Frédéric Li, M. Grzegorzek","doi":"10.1109/CBMI.2015.7153632","DOIUrl":null,"url":null,"abstract":"To detect an event which is defined by the interaction of objects in a video, it is necessary to capture their spatio-temporal relation. However, the video only displays the original 3D space which is projected onto a 2D image plane. This paper introduces a method which extracts 3D trajectories of objects from 2D videos. Each trajectory represents the transition of an object's positions in the 3D space. We extract such trajectories by combining object detection with depth estimation that estimates the depth information in 2D videos. The major problem for this is the inconsistency between object detection and depth estimation results. For example, significantly different depths may be estimated for the region of the same object, and an object region that is appropriately shaped by estimated depths may be missed. To overcome this, we first initialise the 3D position of an object by selecting the frame with the highest consistency between the object detection and depth estimation results. Then, we track the object in the 3D space using particle filter, where the 3D position of this object is modelled as a hidden state to generate its 2D visual appearance. Experimental results demonstrate the effectiveness of our method.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To detect an event which is defined by the interaction of objects in a video, it is necessary to capture their spatio-temporal relation. However, the video only displays the original 3D space which is projected onto a 2D image plane. This paper introduces a method which extracts 3D trajectories of objects from 2D videos. Each trajectory represents the transition of an object's positions in the 3D space. We extract such trajectories by combining object detection with depth estimation that estimates the depth information in 2D videos. The major problem for this is the inconsistency between object detection and depth estimation results. For example, significantly different depths may be estimated for the region of the same object, and an object region that is appropriately shaped by estimated depths may be missed. To overcome this, we first initialise the 3D position of an object by selecting the frame with the highest consistency between the object detection and depth estimation results. Then, we track the object in the 3D space using particle filter, where the 3D position of this object is modelled as a hidden state to generate its 2D visual appearance. Experimental results demonstrate the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维轨迹提取中的目标检测与深度估计
为了检测由视频中物体的交互作用所定义的事件,有必要捕获它们的时空关系。然而,视频只显示原始的3D空间,并将其投影到二维图像平面上。介绍了一种从二维视频中提取物体三维轨迹的方法。每条轨迹表示物体在3D空间中的位置变化。我们通过结合物体检测和深度估计来提取这些轨迹,从而估计2D视频中的深度信息。主要问题是目标检测和深度估计结果不一致。例如,可能会对同一对象的区域估计明显不同的深度,并且可能会错过由估计深度适当塑造的对象区域。为了克服这个问题,我们首先通过选择物体检测和深度估计结果之间一致性最高的帧来初始化物体的3D位置。然后,我们使用粒子滤波在三维空间中跟踪物体,其中该物体的三维位置被建模为隐藏状态以生成其二维视觉外观。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of dissimilarity measures for 3D object retrieval with application to multi-feature retrieval A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing On the use of statistical semantics for metadata-based social image retrieval Automatic detection of repetitive actions in a video Hierarchical clustering pseudo-relevance feedback for social image search result diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1