Structural indexing of satellite images using texture feature extraction for retrieval

M. Gebril, R. Buaba, A. Homaifar, E. Kihn, M. Zhizhin
{"title":"Structural indexing of satellite images using texture feature extraction for retrieval","authors":"M. Gebril, R. Buaba, A. Homaifar, E. Kihn, M. Zhizhin","doi":"10.1109/AERO.2010.5446704","DOIUrl":null,"url":null,"abstract":"A mixture of feature extraction (FE) and a Locality Sensitive Hashing (LSH) based searching algorithm to search for similarity in satellite imagery is presented. The goal is to build an accurate and fast query-by-example using content based image retrieval based on the information extracted from satellite image data. We have investigated and described various feature extraction methods relevant to our work in this paper. The experimental results demonstrate satisfactory retrieval efficiency based on the proposed model. The results show the effectiveness of our approach. 1 2","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A mixture of feature extraction (FE) and a Locality Sensitive Hashing (LSH) based searching algorithm to search for similarity in satellite imagery is presented. The goal is to build an accurate and fast query-by-example using content based image retrieval based on the information extracted from satellite image data. We have investigated and described various feature extraction methods relevant to our work in this paper. The experimental results demonstrate satisfactory retrieval efficiency based on the proposed model. The results show the effectiveness of our approach. 1 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纹理特征提取的卫星图像结构索引检索
提出了一种混合特征提取(FE)和局部敏感哈希(LSH)的卫星图像相似度搜索算法。目标是使用基于内容的图像检索,基于从卫星图像数据中提取的信息,构建准确、快速的逐例查询。在本文中,我们研究并描述了与我们的工作相关的各种特征提取方法。实验结果表明,该模型具有良好的检索效果。结果表明了该方法的有效性。1 2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technology challenges for the Square Kilometer Array Pathways and challenges to innovation in aerospace Mentoring: A key to longevity in Space On choosing quaternion equilibrium point in attitude stabilization Preciseness for predictability with the RealSpec real-time executable specification language
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1