Unsupervised wrapper induction using linked data

Anna Lisa Gentile, Ziqi Zhang, Isabelle Augenstein, F. Ciravegna
{"title":"Unsupervised wrapper induction using linked data","authors":"Anna Lisa Gentile, Ziqi Zhang, Isabelle Augenstein, F. Ciravegna","doi":"10.1145/2479832.2479845","DOIUrl":null,"url":null,"abstract":"This work explores the usage of Linked Data for Web scale Information Extraction and shows encouraging results on the task of Wrapper Induction. We propose a simple knowledge based method which is (i) highly flexible with respect to different domains and (ii) does not require any training material, but exploits Linked Data as background knowledge source to build essential learning resources. The major contribution of this work is a study of how Linked Data - an imprecise, redundant and large-scale knowledge resource - can be used to support Web scale Information Extraction in an effective and efficient way and identify the challenges involved. We show that, for domains that are covered, Linked Data serve as a powerful knowledge resource for Information Extraction. Experiments on a publicly available dataset demonstrate that, under certain conditions, this simple unsupervised approach can achieve competitive results against some complex state of the art that always depends on training data.","PeriodicalId":388497,"journal":{"name":"Proceedings of the seventh international conference on Knowledge capture","volume":"43 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the seventh international conference on Knowledge capture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2479832.2479845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This work explores the usage of Linked Data for Web scale Information Extraction and shows encouraging results on the task of Wrapper Induction. We propose a simple knowledge based method which is (i) highly flexible with respect to different domains and (ii) does not require any training material, but exploits Linked Data as background knowledge source to build essential learning resources. The major contribution of this work is a study of how Linked Data - an imprecise, redundant and large-scale knowledge resource - can be used to support Web scale Information Extraction in an effective and efficient way and identify the challenges involved. We show that, for domains that are covered, Linked Data serve as a powerful knowledge resource for Information Extraction. Experiments on a publicly available dataset demonstrate that, under certain conditions, this simple unsupervised approach can achieve competitive results against some complex state of the art that always depends on training data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用链接数据的无监督包装器归纳
这项工作探索了关联数据在Web规模信息提取中的使用,并在包装器归纳任务上显示了令人鼓舞的结果。我们提出了一种简单的基于知识的方法,它(i)在不同的领域具有高度的灵活性,(ii)不需要任何培训材料,而是利用关联数据作为背景知识来源来构建必要的学习资源。这项工作的主要贡献是研究如何使用关联数据——一种不精确、冗余和大规模的知识资源——以有效和高效的方式支持网络规模的信息提取,并确定所涉及的挑战。我们表明,对于所涵盖的领域,关联数据作为信息提取的强大知识资源。在一个公开可用的数据集上的实验表明,在某些条件下,这种简单的无监督方法可以与一些总是依赖于训练数据的复杂技术相比,获得有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised wrapper induction using linked data Toward semantic interoperability with linked foundationalontologies in ROMULUS Concept adjustment for description logics Proceedings of the seventh international conference on Knowledge capture An empirical perspective on representing time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1