Improved Bi-Channel CNN For Covid-19 Diagnosis

Nivea Kesav, Jibukumar M.G
{"title":"Improved Bi-Channel CNN For Covid-19 Diagnosis","authors":"Nivea Kesav, Jibukumar M.G","doi":"10.1109/CSI54720.2022.9924106","DOIUrl":null,"url":null,"abstract":"The Covid-19 virus, which initially originated in Wuhan, China, was declared a pandemic by the World Health Organization on March 11, 2020. Since then, it has had a tremendous impact on human health and the World economy. Rapid identification and treatment of the disease have been a prime concern. Analysis of Radiographic Chest X-ray images has become an effective way to determine the disease and its severity. This paper proposes a low complex methodology that uses Convolutional Neural Networks (CNN) for classifying three types of X-ray images, Covid-19, Healthy and Viral Pneumonia. The architecture consists of two channels: the main channel with four convolutional layers with increasing order of filter size and a side channel with two convolutional layers of the same filter size. The architecture performs well with an overall accuracy of 95.24% and with only 89,41,783 parameters. It has been compared with different deep CNN s and several state-of-the-art works of literature.","PeriodicalId":221137,"journal":{"name":"2022 International Conference on Connected Systems & Intelligence (CSI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Connected Systems & Intelligence (CSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSI54720.2022.9924106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Covid-19 virus, which initially originated in Wuhan, China, was declared a pandemic by the World Health Organization on March 11, 2020. Since then, it has had a tremendous impact on human health and the World economy. Rapid identification and treatment of the disease have been a prime concern. Analysis of Radiographic Chest X-ray images has become an effective way to determine the disease and its severity. This paper proposes a low complex methodology that uses Convolutional Neural Networks (CNN) for classifying three types of X-ray images, Covid-19, Healthy and Viral Pneumonia. The architecture consists of two channels: the main channel with four convolutional layers with increasing order of filter size and a side channel with two convolutional layers of the same filter size. The architecture performs well with an overall accuracy of 95.24% and with only 89,41,783 parameters. It has been compared with different deep CNN s and several state-of-the-art works of literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进双通道CNN用于Covid-19诊断
新冠肺炎病毒最初起源于中国武汉,于2020年3月11日被世界卫生组织宣布为大流行。从那时起,它对人类健康和世界经济产生了巨大影响。快速识别和治疗该疾病一直是人们关注的首要问题。胸部x线影像分析已成为判断疾病及其严重程度的有效方法。本文提出了一种低复杂度的方法,使用卷积神经网络(CNN)对三种类型的x射线图像,Covid-19,健康和病毒性肺炎进行分类。该架构由两个通道组成:具有四个卷积层的主通道和具有两个相同滤波器大小的卷积层的侧通道。该体系结构表现良好,总体精度为95.24%,参数仅为89,41,783。并将其与不同的深度CNN和几部最先进的文学作品进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time Object Detection in Microscopic Image of Indian Herbal Plants using YOLOv5 on Jetson Nano Estimation and Interception of a Spiralling Target on Reentry in the Presence of non-Gaussian Measurement Noise COVID-19 Relief Measures assimilating Open Source Intelligence Fake News Article classification using Random Forest, Passive Aggressive, and Gradient Boosting Improved Bi-Channel CNN For Covid-19 Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1