ECG beat clustering using fuzzy c-means algorithm and particle swarm optimization

Berat Dogan, Mehmet Korürek
{"title":"ECG beat clustering using fuzzy c-means algorithm and particle swarm optimization","authors":"Berat Dogan, Mehmet Korürek","doi":"10.1109/SIU.2012.6204527","DOIUrl":null,"url":null,"abstract":"In this paper, an ECG beat clustering method based on fuzzy c-means algorithm and particle swarm optimization is proposed. For this purpose, ECG records which are selected from MIT-BIH arrhythmia database are firstly preprocessed and then four morphological features are extracted for six different types of beats. These features are then clustered with the proposed method. During the classification phase, in order to minimize the incongruity between the experiments and to better evaluate the performance of the proposed system a simple but stable classification method is used. After several experiments it is observed that the proposed method overcomes the restrictions of the fuzzy c-means algorithm which are sensitivity to initialization and trapping into local minima.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, an ECG beat clustering method based on fuzzy c-means algorithm and particle swarm optimization is proposed. For this purpose, ECG records which are selected from MIT-BIH arrhythmia database are firstly preprocessed and then four morphological features are extracted for six different types of beats. These features are then clustered with the proposed method. During the classification phase, in order to minimize the incongruity between the experiments and to better evaluate the performance of the proposed system a simple but stable classification method is used. After several experiments it is observed that the proposed method overcomes the restrictions of the fuzzy c-means algorithm which are sensitivity to initialization and trapping into local minima.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊c均值算法和粒子群算法的心电拍聚类
提出了一种基于模糊c均值算法和粒子群算法的心电拍聚类方法。为此,首先从MIT-BIH心律失常数据库中选择心电记录进行预处理,然后提取六种不同类型心跳的四种形态特征。然后使用所提出的方法对这些特征进行聚类。在分类阶段,为了尽量减少实验之间的不一致性,更好地评估系统的性能,采用了一种简单而稳定的分类方法。实验结果表明,该方法克服了模糊c均值算法对初始化敏感和陷入局部极小值的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real time FPGA implementation of Full Search video stabilization method MIMO communication theory, algorithms, and prototyping Multiview scene matching using local features and invariant geometric constraints Pulse position modulation based optical spatial modulation over atmospheric turbulence channels On the importance of application based scheduling for femtocell access points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1