{"title":"Extracting semantic knowledge from Wikipedia category names","authors":"P. Radhakrishnan, Vasudeva Varma","doi":"10.1145/2509558.2509577","DOIUrl":null,"url":null,"abstract":"Wikipedia being a large, freely available, frequently updated and community maintained knowledge base, has been central to much recent research. However, quite often we find that the information extracted from it has extraneous content. This paper proposes a method to extract useful information from Wikipedia, using Semantic Features derived from Wikipedia categories. The proposed method provides good performance as a Wikipedia category based method. Experimental results on benchmark datasets show that the proposed method achieves a correlation coefficient of 0.66 with human judgments. The Semantic Features derived by this method gave good correlation with human rankings in a web search query completion application.","PeriodicalId":371465,"journal":{"name":"Conference on Automated Knowledge Base Construction","volume":"436 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Automated Knowledge Base Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2509558.2509577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Wikipedia being a large, freely available, frequently updated and community maintained knowledge base, has been central to much recent research. However, quite often we find that the information extracted from it has extraneous content. This paper proposes a method to extract useful information from Wikipedia, using Semantic Features derived from Wikipedia categories. The proposed method provides good performance as a Wikipedia category based method. Experimental results on benchmark datasets show that the proposed method achieves a correlation coefficient of 0.66 with human judgments. The Semantic Features derived by this method gave good correlation with human rankings in a web search query completion application.