Inferential Estimation of Polymer Melt Index Using Deep Belief Networks

Changhao Zhu, Jie Zhang
{"title":"Inferential Estimation of Polymer Melt Index Using Deep Belief Networks","authors":"Changhao Zhu, Jie Zhang","doi":"10.23919/IConAC.2018.8749111","DOIUrl":null,"url":null,"abstract":"This paper presents using deep belief networks for the inferential estimation of polypropylene melt index in an industrial polymerization process. The polymer melt index is difficult to be measured online in practice. The relationship between easy-to-measure process variables and difficult-to-measure polymer melt index is found by using a deep belief network model. The development of a deep belief network model contains an unsupervised training process and a supervised training process. Deep belief networks use a novel semi-supervised learning method. The process operational data without corresponding quality measurements can be used in the unsupervised training process. The profuse information behind input data are captured by deep belief networks. It is shown that the deep belief network model gives very accurate estimation of melt index.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IConAC.2018.8749111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents using deep belief networks for the inferential estimation of polypropylene melt index in an industrial polymerization process. The polymer melt index is difficult to be measured online in practice. The relationship between easy-to-measure process variables and difficult-to-measure polymer melt index is found by using a deep belief network model. The development of a deep belief network model contains an unsupervised training process and a supervised training process. Deep belief networks use a novel semi-supervised learning method. The process operational data without corresponding quality measurements can be used in the unsupervised training process. The profuse information behind input data are captured by deep belief networks. It is shown that the deep belief network model gives very accurate estimation of melt index.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度信念网络的聚合物熔体指数推断估计
本文提出了用深度信念网络对工业聚合过程中聚丙烯熔体指数进行推理估计的方法。在实际应用中,聚合物熔体指数难以在线测量。利用深度信念网络模型,找出易测工艺变量与难测聚合物熔体指数之间的关系。深度信念网络模型的开发包含一个无监督训练过程和一个有监督训练过程。深度信念网络采用了一种新颖的半监督学习方法。没有相应质量测量的过程操作数据可以用于无监督训练过程。输入数据背后的大量信息被深度信念网络捕获。结果表明,深度信念网络模型能较准确地估计出熔体指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for Plagiarism Detection: A Case Study for Urdu Language Scale Detection Based on Maximum Entropy Principle Comparative Study of Eddy Current Pulsed and Long Pulse Optical Thermography for Defect Detection in Aluminium Plate Cost Minimization Control for Smart Electric Vehicle Car Parks Sliding Mode Control for Wearable Exoskeleton based on Disturbance Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1