Online sequential extreme learning machine algorithms based on maximum correntropy citerion

Wenyue Wang, Chunfen Shi, Wanli Wang, Lujuan Dang, Shiyuan Wang, Shukai Duan
{"title":"Online sequential extreme learning machine algorithms based on maximum correntropy citerion","authors":"Wenyue Wang, Chunfen Shi, Wanli Wang, Lujuan Dang, Shiyuan Wang, Shukai Duan","doi":"10.23919/ICIF.2017.8009772","DOIUrl":null,"url":null,"abstract":"In this paper, the maximum correntropy (MC) criterion is used as the cost function in the online sequential extreme learning machine (OS-ELM) algorithm and constraint OS-ELM (COS-ELM) algorithm, generating the proposed OS-ELM based on maximum correntropy (OS-ELM-MC) and COS-ELM based on maximum correntropy (COS-ELM-MC). In comparison with OS-ELM and COS-ELM, the proposed OS-ELM-MC and COS-ELM-MC present superior performance in non-Gaussian noise environments and almost the same performance in Gaussian noise environments. As an important parameter, the hidden node number is also discussed by simulations in this paper. Simulations on the examples of Mackey-Glass (MG) chaotic time series prediction and nonlinear regression validate the efficiency of the proposed OS-ELM-MC and COS-ELM-MC.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, the maximum correntropy (MC) criterion is used as the cost function in the online sequential extreme learning machine (OS-ELM) algorithm and constraint OS-ELM (COS-ELM) algorithm, generating the proposed OS-ELM based on maximum correntropy (OS-ELM-MC) and COS-ELM based on maximum correntropy (COS-ELM-MC). In comparison with OS-ELM and COS-ELM, the proposed OS-ELM-MC and COS-ELM-MC present superior performance in non-Gaussian noise environments and almost the same performance in Gaussian noise environments. As an important parameter, the hidden node number is also discussed by simulations in this paper. Simulations on the examples of Mackey-Glass (MG) chaotic time series prediction and nonlinear regression validate the efficiency of the proposed OS-ELM-MC and COS-ELM-MC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大熵准则的在线序贯极限学习机算法
本文将最大相关熵(MC)准则作为在线顺序极值学习机(OS-ELM)算法和约束OS-ELM (COS-ELM)算法的代价函数,生成了基于最大相关熵的OS-ELM (OS-ELM-MC)和基于最大相关熵的COS-ELM (COS-ELM-MC)。与OS-ELM和COS-ELM相比,本文提出的OS-ELM- mc和COS-ELM- mc在非高斯噪声环境下表现出优越的性能,在高斯噪声环境下表现出几乎相同的性能。作为一个重要的参数,本文还通过仿真讨论了隐节点数。通过mckey - glass (MG)混沌时间序列预测和非线性回归实例的仿真,验证了OS-ELM-MC和COS-ELM-MC的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1