A Data-driven Method for Estimating Parameter Uncertainty in PMU-based Power Plant Model Validation

Jacob Eisenbarth, J. Wold
{"title":"A Data-driven Method for Estimating Parameter Uncertainty in PMU-based Power Plant Model Validation","authors":"Jacob Eisenbarth, J. Wold","doi":"10.1109/KPEC47870.2020.9167601","DOIUrl":null,"url":null,"abstract":"Event-based, online power plant model validation is an important component in economical maintenance of power grid reliability. It is well-known that any given event will not excite all portions of a power plant model, so those portions cannot be considered validated. This paper introduces a method to provide quantitative information about the uncertainty of model parameters for a given event. This information can be used to identify the portions of a model that should be considered validated and those that will require additional events to validate.","PeriodicalId":308212,"journal":{"name":"2020 IEEE Kansas Power and Energy Conference (KPEC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Kansas Power and Energy Conference (KPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KPEC47870.2020.9167601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Event-based, online power plant model validation is an important component in economical maintenance of power grid reliability. It is well-known that any given event will not excite all portions of a power plant model, so those portions cannot be considered validated. This paper introduces a method to provide quantitative information about the uncertainty of model parameters for a given event. This information can be used to identify the portions of a model that should be considered validated and those that will require additional events to validate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于pmu的电厂模型验证中参数不确定性估计的数据驱动方法
基于事件的在线电厂模型验证是电网可靠性经济维护的重要组成部分。众所周知,任何给定的事件都不会激发电厂模型的所有部分,因此这些部分不能被认为是有效的。本文介绍了一种为给定事件提供模型参数不确定性定量信息的方法。该信息可用于确定模型中应该被认为是验证的部分,以及那些需要额外事件来验证的部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Partial Discharge Modeling of Internal Discharge in Electrical Machine Stator Winding * Adaptive Protection Scheme for a Real-World Microgrid with 100% Inverter-Based Resources A Hybrid Bayesian Ridge Regression-CWT-Catboost Model For PV Power Forecasting Cyber Resilience using State Estimation Updates Based on Cyber Attack Matrix Classification A Data-driven Method for Estimating Parameter Uncertainty in PMU-based Power Plant Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1