Performance Evaluation of Gate-All-Around Si Nanowire Transistors with SiGe Strain engineering

S. Dey, J. Jena, Tara Prasanna Dash, E. Mohapatra, S. Das, C. K. Maiti
{"title":"Performance Evaluation of Gate-All-Around Si Nanowire Transistors with SiGe Strain engineering","authors":"S. Dey, J. Jena, Tara Prasanna Dash, E. Mohapatra, S. Das, C. K. Maiti","doi":"10.1109/MOS-AK.2019.8902440","DOIUrl":null,"url":null,"abstract":"Gate-all-around nanowire transistors show inherently best gate control which gives them an advantage for future applications, possibly below 5nm technology nodes. We investigate several critical aspects that need to be addressed for nanowire transistors to surpass current FinFETs by the introduction of process-induced stress in the channel. Using an advanced simulation framework we analyze Si nanowire transistors. We report on the characterization of strain components in the structures with silicon–germanium source-drain extension. Lattice strain analysis is performed using elasticity theory. Self-consistent Schrodinger-Poisson based simulations are used to clarify the physical mechanisms for mobility enhancement and to provide guidelines for nanowire transistor design. Finally, we investigate how the most favorable stress configurations in the channel can translate into improvements in performance metrics such as on/off current ratio, threshold voltage, and subthreshold slope of strain-engineered nanowire transistors.","PeriodicalId":178751,"journal":{"name":"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOS-AK.2019.8902440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gate-all-around nanowire transistors show inherently best gate control which gives them an advantage for future applications, possibly below 5nm technology nodes. We investigate several critical aspects that need to be addressed for nanowire transistors to surpass current FinFETs by the introduction of process-induced stress in the channel. Using an advanced simulation framework we analyze Si nanowire transistors. We report on the characterization of strain components in the structures with silicon–germanium source-drain extension. Lattice strain analysis is performed using elasticity theory. Self-consistent Schrodinger-Poisson based simulations are used to clarify the physical mechanisms for mobility enhancement and to provide guidelines for nanowire transistor design. Finally, we investigate how the most favorable stress configurations in the channel can translate into improvements in performance metrics such as on/off current ratio, threshold voltage, and subthreshold slope of strain-engineered nanowire transistors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SiGe应变工程的栅极全能硅纳米线晶体管性能评价
栅极全能纳米线晶体管表现出固有的最佳栅极控制,这使它们在未来的应用中具有优势,可能低于5nm技术节点。我们研究了纳米线晶体管需要解决的几个关键方面,通过在通道中引入工艺诱导应力来超越当前的finfet。利用先进的仿真框架对硅纳米线晶体管进行了分析。本文报道了硅锗源漏扩展结构中应变分量的表征。采用弹性理论进行点阵应变分析。基于自洽薛定谔-泊松的模拟用于阐明迁移率增强的物理机制,并为纳米线晶体管的设计提供指导。最后,我们研究了通道中最有利的应力配置如何转化为性能指标的改进,如应变工程纳米线晶体管的开/关电流比、阈值电压和亚阈值斜率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Efficient Binary Adders for Error Resilient Applications Performance Evaluation of Gate-All-Around Si Nanowire Transistors with SiGe Strain engineering Charge and Capacitance Compact Model for III-V Quadruple-Gate FETs With Square Geometry Development of Low-Cost Silicon BiCMOS Technology for RF Applications MOS-AK India 2019 Author Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1