How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO2/SiO2 antireflection and high-reflection coatings

E. Field, J. Bellum, D. Kletecka
{"title":"How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO2/SiO2 antireflection and high-reflection coatings","authors":"E. Field, J. Bellum, D. Kletecka","doi":"10.1117/12.2194131","DOIUrl":null,"url":null,"abstract":"Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out of commission. In light of this circumstance, we decided to explore how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO2 and SiO2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45° angle of incidence (AOI), in P-polarization (P-pol).","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2194131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out of commission. In light of this circumstance, we decided to explore how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO2 and SiO2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45° angle of incidence (AOI), in P-polarization (P-pol).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涂层腔内真空度的降低如何影响HfO2/SiO2增透和高反射涂层的激光损伤抗力
具有最高激光损伤阈值的光学涂层依赖于涂层沉积过程中真空室的清洁条件。镀膜腔内的低底压以及真空系统在沉积过程中保持所需压力的能力是限制光学镀膜中可能引起激光损伤的缺陷数量的重要方面。我们在桑迪亚国家实验室的大型光学镀膜室通常依靠三个低温泵来维持电子束镀膜过程的低压。然而,有时,一个或多个低温泵已经停止使用。鉴于这种情况,我们决定探索仅使用一个或两个冷冻泵导致的受损真空条件下的沉积如何影响激光诱导光学涂层的损伤阈值。本研究的涂层由HfO2和SiO2层材料组成,包括527 nm的法向增透涂层和45°入射角(AOI)的p偏振(P-pol) 527 nm的高反射涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of particle shape on the laser-contaminant interaction induced damage on the protective capping layer of 1ω high reflector mirror coatings Direct comparison of statistical damage frequency method and raster scan procedure Refined metrology of spatio-temporal dynamics of nanosecond laser pulses Characterization of damage precursor density from laser damage probability measurements with non-Gaussian beams Direct absorption measurements in thin rods and optical fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1