Traffic Sign Identification Using Deep Learning

Ratheesh Ravindran, M. Santora, M. Faied, Mohammad Fanaei
{"title":"Traffic Sign Identification Using Deep Learning","authors":"Ratheesh Ravindran, M. Santora, M. Faied, Mohammad Fanaei","doi":"10.1109/CSCI49370.2019.00063","DOIUrl":null,"url":null,"abstract":"One of the most crucial enabling technologies for automated driving systems is the ability to reliably detect and classify a wide range of traffic signs in various driving conditions at different distances. Due to the complexity and dynamic nature of driving environments, it is difficult to reliably detect traffic signs with conventional image processing methods. Artificial intelligence in combination with image processing has proven to be a great success to address this problem in recent studies. This paper focuses on the selection of Deep Neural Networks (DNN) based on the application-oriented performance by taking into consideration the mean Average Precision (mAP) and Frames Per Second (FPS) as the major evaluation criteria. Faster Region-based Convolutional Neural Network (Faster R-CNN) is a newly proposed DNN in the literature that has proven to exhibit a balanced tradeoff between mAP and FPS performance measures. This paper starts with a DNN transfer learning and then implements the Faster R-CNN algorithm for the real-time detection and classification of traffic signs using the Robot Operating System (ROS). To reduce the errors due to DNN inaccurate detection, Tesseract\" is added to detect the text in the identified traffic signs. The German Traffic Sign Detection Benchmark (GTSDB) dataset is used in this paper, and additional dataset are created to solve the lack of certain traffic signs in the GTSDB dataset. Simulation with ROS-Gazebo and real-time trials using the Polaris Gem e2 equipped with NVIDIA Drive PX2 demonstrate the efficiency of the proposed integration of DNN with Tesseract in detecting and classifying a wide range of traffic signs.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

One of the most crucial enabling technologies for automated driving systems is the ability to reliably detect and classify a wide range of traffic signs in various driving conditions at different distances. Due to the complexity and dynamic nature of driving environments, it is difficult to reliably detect traffic signs with conventional image processing methods. Artificial intelligence in combination with image processing has proven to be a great success to address this problem in recent studies. This paper focuses on the selection of Deep Neural Networks (DNN) based on the application-oriented performance by taking into consideration the mean Average Precision (mAP) and Frames Per Second (FPS) as the major evaluation criteria. Faster Region-based Convolutional Neural Network (Faster R-CNN) is a newly proposed DNN in the literature that has proven to exhibit a balanced tradeoff between mAP and FPS performance measures. This paper starts with a DNN transfer learning and then implements the Faster R-CNN algorithm for the real-time detection and classification of traffic signs using the Robot Operating System (ROS). To reduce the errors due to DNN inaccurate detection, Tesseract" is added to detect the text in the identified traffic signs. The German Traffic Sign Detection Benchmark (GTSDB) dataset is used in this paper, and additional dataset are created to solve the lack of certain traffic signs in the GTSDB dataset. Simulation with ROS-Gazebo and real-time trials using the Polaris Gem e2 equipped with NVIDIA Drive PX2 demonstrate the efficiency of the proposed integration of DNN with Tesseract in detecting and classifying a wide range of traffic signs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习识别交通标志
自动驾驶系统最关键的使能技术之一是能够在不同距离的各种驾驶条件下可靠地检测和分类各种交通标志。由于驾驶环境的复杂性和动态性,传统的图像处理方法难以可靠地检测出交通标志。在最近的研究中,人工智能与图像处理的结合被证明是解决这一问题的巨大成功。本文以平均精度(mAP)和每秒帧数(FPS)为主要评价标准,从面向应用的性能角度对深度神经网络(DNN)进行了选择。更快的基于区域的卷积神经网络(Faster R-CNN)是文献中新提出的深度神经网络,已被证明在mAP和FPS性能指标之间表现出平衡的权衡。本文从DNN迁移学习开始,利用机器人操作系统(ROS)实现了更快的R-CNN算法,用于交通标志的实时检测和分类。为了减少由于DNN不准确检测而导致的误差,增加了“Tesseract”来检测已识别的交通标志中的文本。本文使用德国交通标志检测基准(GTSDB)数据集,并创建额外的数据集来解决GTSDB数据集中某些交通标志缺失的问题。使用ROS-Gazebo进行仿真,并使用配备NVIDIA Drive PX2的Polaris Gem e2进行实时试验,结果表明,将深度神经网络与Tesseract相结合,可以有效地检测和分类各种交通标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1