Integrating Fractional Brownian Motion Arrivals into the Statistical Network Calculus

Paul Nikolaus, Sebastian A. Henningsen, Michael A. Beck, J. Schmitt
{"title":"Integrating Fractional Brownian Motion Arrivals into the Statistical Network Calculus","authors":"Paul Nikolaus, Sebastian A. Henningsen, Michael A. Beck, J. Schmitt","doi":"10.1109/ITC30.2018.10059","DOIUrl":null,"url":null,"abstract":"Stochastic network calculus (SNC) is a versatile framework to derive probabilistic performance bounds. Recently, it was proposed in [1] to replace the typical a priori assumptions on arrival processes with measurement observations and to incorporate the corresponding statistical uncertainty into calculation of the bounds. This so-called statistical network calculus (StatNC) opens the door for many applications with limited traffic information. However, the important traffic class of self-similar processes such as fractional Brownian Motion (fBm) was left open in [1], thus, e.g., depriving the usage of the StatNC for Internet traffic. In this work, we close this gap by integrating fBm arrivals into the StatNC. To this end, we analyze the impact imposed by the uncertainty on the backlog bound and show in numerical evaluations that the additional inaccuracy is only of moderate size.","PeriodicalId":159861,"journal":{"name":"2018 30th International Teletraffic Congress (ITC 30)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Teletraffic Congress (ITC 30)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC30.2018.10059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic network calculus (SNC) is a versatile framework to derive probabilistic performance bounds. Recently, it was proposed in [1] to replace the typical a priori assumptions on arrival processes with measurement observations and to incorporate the corresponding statistical uncertainty into calculation of the bounds. This so-called statistical network calculus (StatNC) opens the door for many applications with limited traffic information. However, the important traffic class of self-similar processes such as fractional Brownian Motion (fBm) was left open in [1], thus, e.g., depriving the usage of the StatNC for Internet traffic. In this work, we close this gap by integrating fBm arrivals into the StatNC. To this end, we analyze the impact imposed by the uncertainty on the backlog bound and show in numerical evaluations that the additional inaccuracy is only of moderate size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将分数阶布朗运动引入统计网络演算
随机网络演算(SNC)是一个通用的框架来推导概率性能边界。最近,文献[1]提出用测量观测值代替对到达过程的典型先验假设,并将相应的统计不确定性纳入边界的计算中。这种所谓的统计网络演算(StatNC)为许多交通信息有限的应用打开了大门。然而,自相似过程的重要流量类别,如分数布朗运动(fBm)在[1]中被保留,因此,例如,剥夺了StatNC对互联网流量的使用。在这项工作中,我们通过将fBm到达整合到StatNC中来缩小这一差距。为此,我们分析了不确定性对积压边界施加的影响,并在数值评估中表明,额外的不准确性只是中等大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling a Win-Win Coexistence Mechanism for WiFi and LTE in Unlicensed Bands Integrating Fractional Brownian Motion Arrivals into the Statistical Network Calculus Statistical Delay Bounds for Automatic Repeat Request Protocols with Pipelining Time Constrained Service-Aware Migration of Virtualized Services for Mobile Edge Computing [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1