Implementation of image fusion model using DCGAN

P. Sreedhar, Tedla Balaji, Somayajulu Meduri Sai
{"title":"Implementation of image fusion model using DCGAN","authors":"P. Sreedhar, Tedla Balaji, Somayajulu Meduri Sai","doi":"10.26634/jip.9.4.19229","DOIUrl":null,"url":null,"abstract":"Remote Sensing Images (RSI) are captured by the satellites. The quality of the RSIs primarily depends on environmental conditions and image-capturing device capability. Rapid development in technology leads to the generation of High- Resolution (HR) images from satellites. However, these images are to be processed in a scientific way for the best results. A new Image Fusion (IF) technique with the help of wavelets, Deep Convolutional Generative Adversarial Networks (DCGAN), was designed to get super-resolution images for satellite images. Residual Convolution Neural Network (ResNet) increases the fused image accuracy by minimizing the vanishing gradient problem. Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Method (SSIM), Feature Similarity Index Method (FSIM), and Universal Image Quality (UIQ) are taken as the metrics for comparing the results with other models. The experimental results are better than previous methods and minimize the spatial and spectral losses during the fusion.","PeriodicalId":292215,"journal":{"name":"i-manager’s Journal on Image Processing","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager’s Journal on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jip.9.4.19229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remote Sensing Images (RSI) are captured by the satellites. The quality of the RSIs primarily depends on environmental conditions and image-capturing device capability. Rapid development in technology leads to the generation of High- Resolution (HR) images from satellites. However, these images are to be processed in a scientific way for the best results. A new Image Fusion (IF) technique with the help of wavelets, Deep Convolutional Generative Adversarial Networks (DCGAN), was designed to get super-resolution images for satellite images. Residual Convolution Neural Network (ResNet) increases the fused image accuracy by minimizing the vanishing gradient problem. Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Method (SSIM), Feature Similarity Index Method (FSIM), and Universal Image Quality (UIQ) are taken as the metrics for comparing the results with other models. The experimental results are better than previous methods and minimize the spatial and spectral losses during the fusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用DCGAN实现图像融合模型
卫星捕获遥感图像(RSI)。rsi的质量主要取决于环境条件和图像捕获设备的能力。技术的快速发展导致了高分辨率卫星图像的生成。然而,这些图像必须以科学的方式进行处理,以获得最佳效果。设计了一种基于小波的图像融合技术——深度卷积生成对抗网络(DCGAN),用于卫星图像的超分辨率图像处理。残差卷积神经网络(ResNet)通过最小化梯度消失问题来提高融合图像的精度。以峰值信噪比(PSNR)、结构相似度指数法(SSIM)、特征相似度指数法(FSIM)和通用图像质量(UIQ)作为指标,与其他模型的结果进行比较。实验结果优于以往的方法,并最大限度地减少了融合过程中的空间和光谱损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vehicular detection technique using image processing WHITE BLOOD CELL IMAGE CLASSIFICATION FOR ASSISTING PATHOLOGIST USING DEEP MACHINE LEARNING: THE COMPARATIVE APPROACH PRIMARY SCREENING TECHNIQUE FOR DETECTING BREAST CANCER BANK TRANSACTION USING IRIS RECOGNITION SYSTEM Implementation of image fusion model using DCGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1