Nonlinear and Machine-Learning-Based Station-Keeping Control of an Unmanned Surface Vehicle

Armando J. Sinisterra, A. Barker, S. Verma, M. Dhanak
{"title":"Nonlinear and Machine-Learning-Based Station-Keeping Control of an Unmanned Surface Vehicle","authors":"Armando J. Sinisterra, A. Barker, S. Verma, M. Dhanak","doi":"10.1115/omae2020-19276","DOIUrl":null,"url":null,"abstract":"\n This study is part of ongoing work on situational awareness and autonomy of a 16’ WAM-V USV. The objective of this work is to determine the potential and merits of application of two different station-keeping controllers for a fixed-pose motion control of the USV. The assessment includes performance and power consumption metrics tested under harsh environmental disturbances to evaluate the robustness of the control methods. The first is a nonlinear trajectory-tracking control method based on the sliding-mode control technique, while the second method uses a machine-learning approach based on Deep Reinforcement Learning. Results from both the approaches are compared for various case studies.","PeriodicalId":431910,"journal":{"name":"Volume 6B: Ocean Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-19276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study is part of ongoing work on situational awareness and autonomy of a 16’ WAM-V USV. The objective of this work is to determine the potential and merits of application of two different station-keeping controllers for a fixed-pose motion control of the USV. The assessment includes performance and power consumption metrics tested under harsh environmental disturbances to evaluate the robustness of the control methods. The first is a nonlinear trajectory-tracking control method based on the sliding-mode control technique, while the second method uses a machine-learning approach based on Deep Reinforcement Learning. Results from both the approaches are compared for various case studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非线性和机器学习的无人水面车辆站控
这项研究是正在进行的16英尺WAM-V无人潜航器态势感知和自主工作的一部分。本文的目的是确定两种不同的站位保持控制器在无人潜航器固定姿态运动控制中的应用潜力和优点。评估包括在恶劣环境干扰下测试的性能和功耗指标,以评估控制方法的鲁棒性。第一种方法是基于滑模控制技术的非线性轨迹跟踪控制方法,第二种方法是基于深度强化学习的机器学习方法。在不同的案例研究中比较了这两种方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study on Cavitation Motion of Underwater Vehicle With Protrusions Neural Network-Based Method for Structural Damage and Scour Estimation Using Modal Parameters and Dynamic Responses Detailed Study on the Behavior of Ships in Very Short Waves Nonlinear and Machine-Learning-Based Station-Keeping Control of an Unmanned Surface Vehicle Instantaneous Center of Rotation of a Vessel Submitted to Oblique Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1