Armando J. Sinisterra, A. Barker, S. Verma, M. Dhanak
{"title":"Nonlinear and Machine-Learning-Based Station-Keeping Control of an Unmanned Surface Vehicle","authors":"Armando J. Sinisterra, A. Barker, S. Verma, M. Dhanak","doi":"10.1115/omae2020-19276","DOIUrl":null,"url":null,"abstract":"\n This study is part of ongoing work on situational awareness and autonomy of a 16’ WAM-V USV. The objective of this work is to determine the potential and merits of application of two different station-keeping controllers for a fixed-pose motion control of the USV. The assessment includes performance and power consumption metrics tested under harsh environmental disturbances to evaluate the robustness of the control methods. The first is a nonlinear trajectory-tracking control method based on the sliding-mode control technique, while the second method uses a machine-learning approach based on Deep Reinforcement Learning. Results from both the approaches are compared for various case studies.","PeriodicalId":431910,"journal":{"name":"Volume 6B: Ocean Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-19276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study is part of ongoing work on situational awareness and autonomy of a 16’ WAM-V USV. The objective of this work is to determine the potential and merits of application of two different station-keeping controllers for a fixed-pose motion control of the USV. The assessment includes performance and power consumption metrics tested under harsh environmental disturbances to evaluate the robustness of the control methods. The first is a nonlinear trajectory-tracking control method based on the sliding-mode control technique, while the second method uses a machine-learning approach based on Deep Reinforcement Learning. Results from both the approaches are compared for various case studies.