AKUPM

Xiaoli Tang, Tengyun Wang, Haizhi Yang, Hengjie Song
{"title":"AKUPM","authors":"Xiaoli Tang, Tengyun Wang, Haizhi Yang, Hengjie Song","doi":"10.1145/3292500.3330705","DOIUrl":null,"url":null,"abstract":"Recently, much attention has been paid to the usage of knowledge graph within the context of recommender systems to alleviate the data sparsity and cold-start problems. However, when incorporating entities from a knowledge graph to represent users, most existing works are unaware of the relationships between these entities and users. As a result, the recommendation results may suffer a lot from some unrelated entities. In this paper, we investigate how to explore these relationships which are essentially determined by the interactions among entities. Firstly, we categorize the interactions among entities into two types: inter-entity-interaction and intra-entity-interaction. Inter-entity-interaction is the interactions among entities that affect their importances to represent users. And intra-entity-interaction is the interactions within an entity that describe the different characteristics of this entity when involved in different relations. Then, considering these two types of interactions, we propose a novel model named Attention-enhanced Knowledge-aware User Preference Model (AKUPM) for click-through rate (CTR) prediction. More specifically, a self-attention network is utilized to capture the inter-entity-interaction by learning appropriate importance of each entity w.r.t the user. Moreover, the intra-entity-interaction is modeled by projecting each entity into its connected relation spaces to obtain the suitable characteristics. By doing so, AKUPM is able to figure out the most related part of incorporated entities (i.e., filter out the unrelated entities). Extensive experiments on two real-world public datasets demonstrate that AKUPM achieves substantial gains in terms of common evaluation metrics (e.g., AUC, ACC and Recall@top-K) over several state-of-the-art baselines.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, much attention has been paid to the usage of knowledge graph within the context of recommender systems to alleviate the data sparsity and cold-start problems. However, when incorporating entities from a knowledge graph to represent users, most existing works are unaware of the relationships between these entities and users. As a result, the recommendation results may suffer a lot from some unrelated entities. In this paper, we investigate how to explore these relationships which are essentially determined by the interactions among entities. Firstly, we categorize the interactions among entities into two types: inter-entity-interaction and intra-entity-interaction. Inter-entity-interaction is the interactions among entities that affect their importances to represent users. And intra-entity-interaction is the interactions within an entity that describe the different characteristics of this entity when involved in different relations. Then, considering these two types of interactions, we propose a novel model named Attention-enhanced Knowledge-aware User Preference Model (AKUPM) for click-through rate (CTR) prediction. More specifically, a self-attention network is utilized to capture the inter-entity-interaction by learning appropriate importance of each entity w.r.t the user. Moreover, the intra-entity-interaction is modeled by projecting each entity into its connected relation spaces to obtain the suitable characteristics. By doing so, AKUPM is able to figure out the most related part of incorporated entities (i.e., filter out the unrelated entities). Extensive experiments on two real-world public datasets demonstrate that AKUPM achieves substantial gains in terms of common evaluation metrics (e.g., AUC, ACC and Recall@top-K) over several state-of-the-art baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1