Designing a fuzzy expert system to predict the concrete mix design

M. Neshat, Ali Adeli
{"title":"Designing a fuzzy expert system to predict the concrete mix design","authors":"M. Neshat, Ali Adeli","doi":"10.1109/CIMSA.2011.6059910","DOIUrl":null,"url":null,"abstract":"The aim of this study is to design a Fuzzy Expert System to determine the concrete mix design. In the civil engineering, the determination of concrete mix design is so difficult and usually results in imprecision. Fuzzy logic is a way to represent a sort of uncertainty which is understandable for human. So, we can use the fuzzy logic to easily determine the concrete mix designs in a descriptive form. The input fields of system are Slump, Maximum Size of Aggregate (Dmax), Concrete Compressive Strength (CCS) and Fineness Modulus (FM). The output fields are quantities of water, Cement, Fine Aggregate (F.A) and Course Aggregate (C.A). The experimental results show that the average error of predicted compressive strength for FIS is 6.43%, the minimum error of which is 4.73%.","PeriodicalId":422972,"journal":{"name":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2011.6059910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The aim of this study is to design a Fuzzy Expert System to determine the concrete mix design. In the civil engineering, the determination of concrete mix design is so difficult and usually results in imprecision. Fuzzy logic is a way to represent a sort of uncertainty which is understandable for human. So, we can use the fuzzy logic to easily determine the concrete mix designs in a descriptive form. The input fields of system are Slump, Maximum Size of Aggregate (Dmax), Concrete Compressive Strength (CCS) and Fineness Modulus (FM). The output fields are quantities of water, Cement, Fine Aggregate (F.A) and Course Aggregate (C.A). The experimental results show that the average error of predicted compressive strength for FIS is 6.43%, the minimum error of which is 4.73%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计一个模糊专家系统来预测混凝土配合比设计
本研究的目的是设计一个模糊专家系统来确定混凝土配合比设计。在土木工程中,混凝土配合比设计的确定是一个难点,往往导致不精确。模糊逻辑是人类可以理解的不确定性的一种表现方式。因此,我们可以利用模糊逻辑以描述性的形式方便地确定混凝土配合比设计。系统输入域为坍落度、最大骨料粒径(Dmax)、混凝土抗压强度(CCS)和细度模量(FM)。输出字段是水,水泥,细骨料(F.A)和粗骨料(C.A)的数量。实验结果表明,FIS抗压强度预测的平均误差为6.43%,最小误差为4.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Personal dosimeter for the measurement of artificial optical radiation (AOR) exposure Designing a fuzzy expert system to predict the concrete mix design Wildfire smoke detection using computational intelligence techniques Low-cost optimal state feedback fuzzy control of nonlinear second-order servo systems Intelligent control of bioreactor landfills
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1