A multi-model approach for anomaly detection and diagnosis using vibration signals

V. Balanica, Linxia Liao, Heiko Claussen, J. Rosca
{"title":"A multi-model approach for anomaly detection and diagnosis using vibration signals","authors":"V. Balanica, Linxia Liao, Heiko Claussen, J. Rosca","doi":"10.1109/ICPHM.2013.6621426","DOIUrl":null,"url":null,"abstract":"Continuous vibration monitoring of mechanical roller bearing parts potentially reduces machine downtime through timely prediction and diagnosis of abnormal events. Despite the progress made in the literature, challenges remain in how to assess performance related information for maintenance decision-making from large data streams. Furthermore, since roller bearings operate under various regimes (e.g., speed and load), it is not trivial to consider the effect of regime changes in the modeling in order to reduce false alarms. The paper describes a multi-model approach to monitor the condition of roller bearings under different operating regimes. Two modeling approaches for anomaly and degradation monitoring are proposed to automatically retrieve information from the data. A self-organizing map (SOM) and a support vector machines (SVM) are used comparatively for the evaluation of a bearing degradation in time (i.e., a dynamic health indicator) and for the determination of changes in the tracked features. The proposed method is validated using data from multiple bearings of the same type.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Continuous vibration monitoring of mechanical roller bearing parts potentially reduces machine downtime through timely prediction and diagnosis of abnormal events. Despite the progress made in the literature, challenges remain in how to assess performance related information for maintenance decision-making from large data streams. Furthermore, since roller bearings operate under various regimes (e.g., speed and load), it is not trivial to consider the effect of regime changes in the modeling in order to reduce false alarms. The paper describes a multi-model approach to monitor the condition of roller bearings under different operating regimes. Two modeling approaches for anomaly and degradation monitoring are proposed to automatically retrieve information from the data. A self-organizing map (SOM) and a support vector machines (SVM) are used comparatively for the evaluation of a bearing degradation in time (i.e., a dynamic health indicator) and for the determination of changes in the tracked features. The proposed method is validated using data from multiple bearings of the same type.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于振动信号的多模型异常检测与诊断方法
通过对异常事件的及时预测和诊断,对机械滚子轴承部件进行连续振动监测,有可能减少机器停机时间。尽管在文献中取得了进展,但如何从大数据流中评估与维护决策相关的性能信息仍然存在挑战。此外,由于滚子轴承在各种状态下运行(例如,速度和负载),为了减少误报,在建模中考虑状态变化的影响并不是微不足道的。本文介绍了一种多模型监测滚子轴承在不同工况下状态的方法。提出了异常和退化监测两种建模方法,实现了数据信息的自动检索。比较使用自组织映射(SOM)和支持向量机(SVM)来评估轴承在时间上的退化(即动态健康指标)和确定跟踪特征的变化。利用同一类型的多个轴承的数据验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A decentralized fault accommodation scheme for nonlinear interconnected systems A circuit-centric approach to electronic system-level diagnostics and prognostics Predictive maintenance policy optimization by discrimination of marginally distinct signals Data mining based fault isolation with FMEA rank: A case study of APU fault identification Complete parametric estimation of the Weibull model with an optimized inspection interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1