Increase-Decrease Game Under Imperfect Competition in Two-stage Zonal Power Markets – Part I: Concept Analysis

M. Sarfati, M. Hesamzadeh, P. Holmberg
{"title":"Increase-Decrease Game Under Imperfect Competition in Two-stage Zonal Power Markets – Part I: Concept Analysis","authors":"M. Sarfati, M. Hesamzadeh, P. Holmberg","doi":"10.17863/CAM.33975","DOIUrl":null,"url":null,"abstract":"This paper is part I of a two-part paper. It proposes a two-stage game to analyze imperfect competition of producers in zonal power markets with a day-ahead and a real-time market. We consider strategic producers in both markets. They need to take both markets into account when deciding what to bid in each market. The demand shocks between these markets are modeled by several scenarios. The two-stage game is formulated as a Twostage Stochastic Equilibrium Problem with Equilibrium Constraints (TS-EPEC). Then it is further reformulated as a two-stage stochastic Mixed-Integer Linear Program (MILP). The solution of this MILP gives the Subgame Perfect Nash Equilibrium (SPNE). To tackle multiple SPNE, we design a procedure which finds all SPNE with different total dispatch costs. The proposed MILP model is solved using Benders decomposition embedded in the CPLEX solver. The proposed MILP model is demonstrated on the 6-node and the IEEE 30-node example systems.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17863/CAM.33975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper is part I of a two-part paper. It proposes a two-stage game to analyze imperfect competition of producers in zonal power markets with a day-ahead and a real-time market. We consider strategic producers in both markets. They need to take both markets into account when deciding what to bid in each market. The demand shocks between these markets are modeled by several scenarios. The two-stage game is formulated as a Twostage Stochastic Equilibrium Problem with Equilibrium Constraints (TS-EPEC). Then it is further reformulated as a two-stage stochastic Mixed-Integer Linear Program (MILP). The solution of this MILP gives the Subgame Perfect Nash Equilibrium (SPNE). To tackle multiple SPNE, we design a procedure which finds all SPNE with different total dispatch costs. The proposed MILP model is solved using Benders decomposition embedded in the CPLEX solver. The proposed MILP model is demonstrated on the 6-node and the IEEE 30-node example systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两阶段区域电力市场不完全竞争下的增减博弈——第一部分:概念分析
这篇论文是两部分论文的第一部分。提出了一种两阶段博弈的方法来分析具有提前一天和实时市场的区域电力市场中生产者的不完全竞争。我们在这两个市场都考虑战略生产商。在决定在每个市场出价时,他们需要同时考虑这两个市场。这些市场之间的需求冲击可以用几种情景来模拟。将两阶段对策描述为具有均衡约束的两阶段随机均衡问题(TS-EPEC)。然后将其重新表述为两阶段随机混合整数线性规划(MILP)。该模型的解给出了子博弈完全纳什均衡(SPNE)。为了处理多个SPNE,我们设计了一个程序来查找具有不同总调度成本的所有SPNE。该模型采用嵌入在CPLEX求解器中的Benders分解进行求解。该模型在6节点和IEEE 30节点实例系统上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameters Estimation of Photovoltaic Models Using a Novel Hybrid Seagull Optimization Algorithm Input Indivisibility and the Measurement Error Quadratically optimal equilibrium points of weakly potential bi-matrix games Mathematical Background of the Theory of Cycle of Money An Example for 'Weak Monotone Comparative Statics'
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1