BYY harmony enforcing regularization for gaussian mixture learning

Hongyan Wang, Jinwen Ma
{"title":"BYY harmony enforcing regularization for gaussian mixture learning","authors":"Hongyan Wang, Jinwen Ma","doi":"10.1109/ICOSP.2008.4697456","DOIUrl":null,"url":null,"abstract":"In this paper, a Bayesian Ying-Yang (BYY) harmony enforcing regularization (BYY-HER) algorithm is proposed for Gaussian mixture learning with a sample dataset on both parameter estimation and model selection, i.e., selecting an appropriate number of Gaussians in the mixture, through a regularization process from the BYY harmony learning to the maximum likelihood learning. It has been demonstrated by experiments on synthetical and real sample datasets that our proposed BYY-HER algorithm can not only select the correct number of actual Gaussians in a dataset, but also obtain good parameter estimations for the parameters in the true mixture.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a Bayesian Ying-Yang (BYY) harmony enforcing regularization (BYY-HER) algorithm is proposed for Gaussian mixture learning with a sample dataset on both parameter estimation and model selection, i.e., selecting an appropriate number of Gaussians in the mixture, through a regularization process from the BYY harmony learning to the maximum likelihood learning. It has been demonstrated by experiments on synthetical and real sample datasets that our proposed BYY-HER algorithm can not only select the correct number of actual Gaussians in a dataset, but also obtain good parameter estimations for the parameters in the true mixture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BYY和谐强化高斯混合学习的正则化
本文提出了一种Bayesian Ying-Yang (BYY)和声强制正则化(BYY- her)算法,用于高斯混合学习,并对样本数据集进行参数估计和模型选择,即通过从BYY和声学习到最大似然学习的正则化过程,在混合物中选择适当数量的高斯函数。在综合和真实样本数据集上的实验表明,我们提出的BYY-HER算法不仅可以在数据集中选择正确的实际高斯数,而且可以对真实混合中的参数进行良好的参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pulse shaping method for Ultra-Wideband communications Matching pursuits with undercomplete dictionary A novel decision-directed channel estimator for OFDM systems Task analysis methods for data selection in task adaptation on mandarin isolated word recognition Combining LBP and Adaboost for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1